这里我们分成三种情况进行分析,分别是单表,两表,三表

1.单表

CREATE TABLE IF NOT EXISTS `article`(
`id` INT(10) NOT NULL PRIMARY KEY AUTO_INCREMENT,
`author_id` INT(10) NOT NULL,
`category_id` INT(10) NOT NULL,
`views` INT(10) NOT NULL,
`comments` INT(10) NOT NULL,
`title` VARBINARY(255) NOT NULL,
`content` TEXT NOT NULL
);
mysql> select * from article;
+----+-----------+-------------+-------+----------+-------+---------+
| id | author_id | category_id | views | comments | title | content |
+----+-----------+-------------+-------+----------+-------+---------+
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 1 | 1 | 3 | 3 | 3 | 3 |
+----+-----------+-------------+-------+----------+-------+---------+
3 rows in set (0.00 sec)

案例

#查询category_id为1且comments大于1的情况下,views最多的atticle_id

mysql> EXPLAIN SELECT id,author_id FROM article WHERE category_id=1 AND comments>1 ORDER BY views DESC LIMIT 1;
+----+-------------+---------+------+---------------+------+---------+------+------+-----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+------+---------------+------+---------+------+------+-----------------------------+
| 1 | SIMPLE | article | ALL | NULL | NULL | NULL | NULL | 3 | Using where; Using filesort |
+----+-------------+---------+------+---------------+------+---------+------+------+-----------------------------+
1 row in set (0.00 sec)
mysql> show index from article;
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| article | 0 | PRIMARY | 1 | id | A | 3 | NULL | NULL | | BTREE | | |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
1 row in set (0.00 sec)

#可以看到,type是All,是最坏的情况,extra里还出现了Using filesort,也是最坏的情况,优化是必须的~

#开始优化

#新建索引

CREATE INDEX idx_article_ccv ON `article`(`category_id`,`comments`,`views`)
mysql> show index from article;
+---------+------------+-----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+-----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| article | 0 | PRIMARY | 1 | id | A | 3 | NULL | NULL | | BTREE | | |
| article | 1 | idx_article_ccv | 1 | category_id | A | 3 | NULL | NULL | | BTREE | | |
| article | 1 | idx_article_ccv | 2 | comments | A | 3 | NULL | NULL | | BTREE | | |
| article | 1 | idx_article_ccv | 3 | views | A | 3 | NULL | NULL | | BTREE | | |
+---------+------------+-----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
4 rows in set (0.00 sec)
mysql> EXPLAIN SELECT id,author_id FROM article WHERE category_id=1 AND comments>1 ORDER BY views DESC LIMIT 1;
+----+-------------+---------+-------+-----------------+-----------------+---------+------+------+---------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+-------+-----------------+-----------------+---------+------+------+---------------------------------------+
| 1 | SIMPLE | article | range | idx_article_ccv | idx_article_ccv | 8 | NULL | 1 | Using index condition; Using filesort |
+----+-------------+---------+-------+-----------------+-----------------+---------+------+------+---------------------------------------+
1 row in set (0.00 sec)

虽然全表扫描的问题解决了,但是Using filesort问题没有解决~

因为comments>1这个范围导致后面的views索引失效

重新建索引

mysql> show index from article;
+---------+------------+----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| article | 0 | PRIMARY | 1 | id | A | 3 | NULL | NULL | | BTREE | | |
| article | 1 | idx_article_cv | 1 | category_id | A | 3 | NULL | NULL | | BTREE | | |
| article | 1 | idx_article_cv | 2 | views | A | 3 | NULL | NULL | | BTREE | | |
+---------+------------+----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
3 rows in set (0.01 sec)
mysql> EXPLAIN SELECT id,author_id FROM article WHERE category_id=1 AND comments>1 ORDER BY views DESC LIMIT 1;
+----+-------------+---------+------+----------------+----------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+------+----------------+----------------+---------+-------+------+-------------+
| 1 | SIMPLE | article | ref | idx_article_cv | idx_article_cv | 4 | const | 2 | Using where |
+----+-------------+---------+------+----------------+----------------+---------+-------+------+-------------+
1 row in set (0.00 sec)

这样就比较好接受了

2.两张表

CREATE TABLE IF NOT EXISTS `agency`(
`agency_id` INT(10) NOT NULL AUTO_INCREMENT,
`guide_id` INT(10) NOT NULL,
PRIMARY KEY(`agency_id`)
);
CREATE TABLE IF NOT EXISTS `language`(
`language_id` INT(10) NOT NULL AUTO_INCREMENT,
`guide_id` INT(10) NOT NULL,
PRIMARY KEY(`language_id`)
);
mysql> select * from language;
+-------------+----------+
| language_id | guide_id |
+-------------+----------+
| 1 | 10 |
| 2 | 7 |
| 3 | 3 |
| 4 | 13 |
| 5 | 17 |
| 6 | 4 |
| 7 | 9 |
| 8 | 19 |
| 9 | 16 |
| 10 | 20 |
+-------------+----------+
10 rows in set (0.00 sec) mysql> select * from agency;
+-----------+----------+
| agency_id | guide_id |
+-----------+----------+
| 1 | 2 |
| 2 | 18 |
| 3 | 3 |
| 4 | 20 |
| 5 | 15 |
| 6 | 11 |
| 7 | 13 |
| 8 | 4 |
| 9 | 14 |
| 10 | 10 |
+-----------+----------+
10 rows in set (0.00 sec)

下面开始explain分析

mysql> explain select * from language left join agency on language.guide_id=agency.guide_id;
+----+-------------+----------+------+---------------+------+---------+------+------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------+---------+------+------+----------------------------------------------------+
| 1 | SIMPLE | language | ALL | NULL | NULL | NULL | NULL | 10 | NULL |
| 1 | SIMPLE | agency | ALL | NULL | NULL | NULL | NULL | 10 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+----------+------+---------------+------+---------+------+------+----------------------------------------------------+
2 rows in set (0.00 sec)

type是All,全表扫描

(1)我们首先在TableB也就是agency表加索引(左连接加在右表上)

mysql> alter table `agency` add index `idx_agency`(`guide_id`);

此时再查看一下执行计划

mysql> explain select * from language left join agency on language.guide_id=agency.guide_id;
+----+-------------+----------+------+---------------+------------+---------+--------------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------------+---------+--------------------------+------+-------------+
| 1 | SIMPLE | language | ALL | NULL | NULL | NULL | NULL | 10 | NULL |
| 1 | SIMPLE | agency | ref | idx_agency | idx_agency | 4 | db0629.language.guide_id | 1 | Using index |
+----+-------------+----------+------+---------------+------------+---------+--------------------------+------+-------------+
2 rows in set (0.00 sec)

删除索引idx_agency,在左表创建索引

mysql> drop index idx_agency on agency;
mysql> alter table language add index ldx_language(guide_id);
mysql> explain select * from language left join agency on language.guide_id=agency.guide_id;
+----+-------------+----------+-------+---------------+--------------+---------+------+------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+-------+---------------+--------------+---------+------+------+----------------------------------------------------+
| 1 | SIMPLE | language | index | NULL | ldx_language | 4 | NULL | 10 | Using index |
| 1 | SIMPLE | agency | ALL | NULL | NULL | NULL | NULL | 10 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+----------+-------+---------------+--------------+---------+------+------+----------------------------------------------------+

这是由左连接特性决定的,left join条件用于确定如何从右表搜索行,左表一定都有,所以右表一定要创建索引~

同理,right join中右表中的数据全都有,所以索引建在左表上

3.三张表的情况

mysql> explain select * from agency left join language on agency.guide_id=language.guide_id left join contact on language.guide_id=contact.guide_id;
+----+-------------+----------+------+---------------+------+---------+------+------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------+---------+------+------+----------------------------------------------------+
| 1 | SIMPLE | agency | ALL | NULL | NULL | NULL | NULL | 10 | NULL |
| 1 | SIMPLE | language | ALL | NULL | NULL | NULL | NULL | 10 | Using where; Using join buffer (Block Nested Loop) |
| 1 | SIMPLE | contact | ALL | NULL | NULL | NULL | NULL | 10 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+----------+------+---------------+------+---------+------+------+----------------------------------------------------+
3 rows in set (0.00 sec)

全部全表扫描

加索引

mysql> alter table language add index idx_language(guide_id);
mysql> alter table contact add index idx_contact(guide_id);
mysql> explain select * from agency left join language on agency.guide_id=language.guide_id left join contact on language.guide_id=contact.guide_id;
+----+-------------+----------+------+---------------+--------------+---------+--------------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+--------------+---------+--------------------------+------+-------------+
| 1 | SIMPLE | agency | ALL | NULL | NULL | NULL | NULL | 10 | NULL |
| 1 | SIMPLE | language | ref | idx_language | idx_language | 4 | db0629.agency.guide_id | 1 | Using index |
| 1 | SIMPLE | contact | ref | idx_contact | idx_contact | 4 | db0629.language.guide_id | 1 | Using index |
+----+-------------+----------+------+---------------+--------------+---------+--------------------------+------+-------------+
3 rows in set (0.00 sec)

MySQL索引优化案例的更多相关文章

  1. MySQL索引优化案例浅析

    MySQL是关系型数据库的一种,查询功能强,数据一致性高,数据安全性高,支持二级索引.但是性能比起非关系型数据库稍弱,特别是百万级以上的数据,很容易出现查询慢的现象.这时候要分析慢的原因,一般情况下是 ...

  2. Mysql 索引优化分析

    MySQL索引优化分析 为什么你写的sql查询慢?为什么你建的索引常失效?通过本章内容,你将学会MySQL性能下降的原因,索引的简介,索引创建的原则,explain命令的使用,以及explain输出字 ...

  3. 知识点:Mysql 索引优化实战(3)

    知识点:Mysql 索引原理完全手册(1) 知识点:Mysql 索引原理完全手册(2) 知识点:Mysql 索引优化实战(3) 知识点:Mysql 数据库索引优化实战(4) 索引原理知识回顾 索引的性 ...

  4. mySql索引优化分析

    MySQL索引优化分析 为什么你写的sql查询慢?为什么你建的索引常失效?通过本章内容,你将学会MySQL性能下降的原因,索引的简介,索引创建的原则,explain命令的使用,以及explain输出字 ...

  5. 深入浅出Mysql索引优化专题分享|面试怪圈

    文章纲要 该文章结合18张手绘图例,21个SQL经典案例.近10000字,将Mysql索引优化经验予以总结,你可以根据纲要来决定是否继续阅读,完成这篇文章大概需要25-30分钟,相信你的坚持是不负时光 ...

  6. mysql索引优化

    mysql 索引优化 >mysql一次查询只能使用一个索引.如果要对多个字段使用索引,建立复合索引. >越小的数据类型通常更好:越小的数据类型通常在磁盘.内存和CPU缓存中都需要更少的空间 ...

  7. MySQL索引优化步骤总结

    在项目使用mysql过程中,随着系统的运行,发现一些慢查询,在这里总结一下mysql索引优化步骤 1.开发过程优化 开发过程中对业务表中查询sql分析sql执行计划(尤其是业务流水表),主要是查看sq ...

  8. MySQL索引优化看这篇文章就够了!

    阅读本文大概需要 5 分钟. 来源:cnblogs.com/songwenjie/p/9410009.html 本文主要讨论MySQL索引的部分知识.将会从MySQL索引基础.索引优化实战和数据库索引 ...

  9. mysql索引优化比普通查询速度快多少

    mysql索引优化比普通查询速度快多少 一.总结 一句话总结:普通查询全表查询,速度较慢,索引优化的话拿空间换时间,一针见血,所以速度要快很多. 索引优化快很多 空间换时间 1.软件层面优化数据库查询 ...

随机推荐

  1. webstorm自动压缩js、css、html【工具篇】

    *注意:自动压缩的文件只能在同级目录下,不能指定文件夹,强制了文件自动保存,设置的手动保存将失效. 插件下载地址:点击这里下载 密码:e6bk 使用方法: 1.css&js 分别添加这两个,c ...

  2. LoadRunner的Capture Level说明

    LoadRunner的Capture Level说明 Capture Level的设置说明: 1.Socket level data. Capture data using trapping on t ...

  3. SQL Join简单介绍

    前沿 Join是关系型数据库系统的重要操作之一,SQL Server中包含的常用Join:内联接.外联接和交叉联接等. 如果我们想在两个或以上的表获取其中从一个表中的行与另一个表中的行匹配的数据,这时 ...

  4. 洛谷P2471 [SCOI2007] 降雨量 [RMQ,模拟]

    题目传送门 降雨量 题目背景 07四川省选 题目描述 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X ...

  5. Linux上用Docker部署Net Core项目

    前提:本地配置好Docker环境1.构建Net Core镜像 docker pull microsoft/dotnet 2.新建一个DockerFile文件并填充内容 #基于 `microsoft/d ...

  6. 【概率】【找规律】hdu6229 Wandering Robots

    题意:一个机器人在正方形迷宫的左上角,迷宫里有些格子有障碍物,每一步机器人会等概率地向能走的格子转移(包含自身).问你无限长的时间之后,机器人处于矩形对角线的右下方的概率. 无限长时间意味着,起点没有 ...

  7. AIDL原理之 Framewok层实现

    AIDLFramework层的架构,如下图: 换而言之,Android就是在传统的C/S架构中加入了一层,实现IPC.图中表明,AIDL类似COM的Proxy/Stub架构.不过是现在android自 ...

  8. Yii2 init 与 beforeAction 区别

    1.执行顺序 init > beforeAction 2.调用子函数时,两个函数都不会再次执行 3.返回值 init返回false继续执行,beforeAction停止执行 4.执行EXIT,全 ...

  9. 【树链剖分/倍增模板】【洛谷】3398:仓鼠找sugar

    P3398 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...

  10. web前端笔记整理,从入门到上天,周周更新

    由于大前端知识点太多,所以一一做了分类整理,详情可见本人博客 http://www.cnblogs.com/luxiaoyao/ 一.HTML 1.注释 格式:<!-- 注释内容 --> ...