这曲线有点像鼓,绕在球上两头是开口的.

#http://www.mathcurve.com/courbes3d/satellite/satellite.shtml

vertices = 

t = from  to (*PI)

r =
k = rand2(0.5, )
a = rand2(PI*0.1, PI*1.9) x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)

(1)当上面代码中的k == 1时

#http://www.mathcurve.com/courbes3d/satellite/satellite.shtml
vertices =
t = from to (*PI)
r =
k =
a = rand2(PI*0.1, PI*1.9) x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)

生成一个帖在球上的伯努利双纽线

再将代码中的a = rand2(PI*0.1, PI*1.9)改为一个输入维度数据

vertices = D1: D2:

u = from  to (PI) D1
v = from to (*PI) D2 r =
k = x = r*(cos(v)*cos(u)*cos(k*u) - sin(u)*sin(k*u))
y = r*(cos(v)*sin(u)*cos(k*u) + cos(u)*sin(k*u))
z = r*sin(v)*cos(k*t)

这时生成一个曲面:

在这个曲面上,可以显示任意一个a值下生成的曲线.

(2)当上面代码中的k == 1时

t = from  to (*PI)
r =
k = 0.5
a = rand2(PI*0.1, PI*1.9)
x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)

再将代码中的a = rand2(PI*0.1, PI*1.9)改为一个输入维度数据

vertices = D1: D2:

u = from  to (*PI) D1
v = from to (*PI) D2 r =
k = 0.5 x = r*(cos(v)*cos(u)*cos(k*u) - sin(u)*sin(k*u))
y = r*(cos(v)*sin(u)*cos(k*u) + cos(u)*sin(k*u))
z = r*sin(v)*cos(k*t)

这时生成一个曲面:

数学图形(2.6)Satellit curve的更多相关文章

  1. 数学图形之将曲线(curve)转化成曲面管

    在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将 ...

  2. 数学图形(1.35)Kappa curve

    不知道这个曲线和那个运动品牌背靠背有什么关系.阿迪原先的商标是个三叶草,难道背靠背也是由数学图形来的? 以下是维基上的解释. In geometry, the kappa curve or Gutsc ...

  3. 数学图形(1.48)Cranioid curve头颅线

    这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...

  4. 数学图形(1.45)毛雷尔玫瑰(Maurer rose)

    毛雷尔玫瑰,也有的翻译是毛瑞尔,它是一种很漂亮的图形.玫瑰线的变异品种. 我没有找到其中文的解释,有兴趣可以看下维基上的相关页面. A Maurer rose of the rose r = sin( ...

  5. WHY数学图形可视化工具(开源)

    WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...

  6. 数学图形(1.49)Nephroid曲线

    昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...

  7. 数学图形之贝塞尔(Bézier)曲面

    前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...

  8. 数学图形(1.47)贝塞尔(Bézier)曲线

    贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线, ...

  9. 数学图形之Breather surface

    这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...

随机推荐

  1. vs.net 效率提升-自定义快捷键

    工欲善其事必先利其器,记录一下自己开发时常用的几个自定义的快捷键.做了这么多年了用着还是比较顺手的分享下~~~~设置时有时设置不成功,非得一项一项设置才可以~~~ 设置自定义快捷键位置:vs.net- ...

  2. 【C#】IEnumrator的枚举数和IEnumerable接口

    声明IEnumerator的枚举数 要创建非泛型接口的枚举数,必须声明实现IEnumerator接口的类,IEnumerator接口有如下特性: 1.她是System.Collections命名空间的 ...

  3. JS 汉字与Unicode码的相互转化

    js文件中,有些变量的值可能会含有汉字,画面引入js以后,有可能会因为字符集的原因,把里面的汉字都变成乱码.后来发现网上的一些js里会把变量中的汉字都表示成”\u“开头的16进制编码,这样应该可以解决 ...

  4. 【leetcode】 21. Merge Two Sorted Lists

    题目描述: Merge two sorted linked lists and return it as a new list. The new list should be made by spli ...

  5. 【JAVAWEB学习笔记】19_事务概述、操作、特性和隔离级别

    事务 学习目标 案例-完成转账 一.事务概述 1.什么是事务 一件事情有n个组成单元 要不这n个组成单元同时成功 要不n个单元就同时失败 就是将n个组成单元放到一个事务中 2.mysql的事务 默认的 ...

  6. 简单了解Linux的inode与block

    Linux常见文件系统类型:ext3(CentOS5),ext4(CentOS6),xfs(CentOS7) Windows常见文件系统类型:FAT32,NTFS (1).inode的内容 1)ino ...

  7. Selenium快速入门(下)

    Frame相关 import time from selenium import webdriver from selenium.common.exceptions import NoSuchElem ...

  8. 【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R, ...

  9. 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1368  Solved: 832 Description 给 ...

  10. dalvik 基于 jvm 的改进

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha 几个class 变成一个dex.constant pool 省内存 zygote ,co ...