这曲线有点像鼓,绕在球上两头是开口的.

#http://www.mathcurve.com/courbes3d/satellite/satellite.shtml

vertices = 

t = from  to (*PI)

r =
k = rand2(0.5, )
a = rand2(PI*0.1, PI*1.9) x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)

(1)当上面代码中的k == 1时

#http://www.mathcurve.com/courbes3d/satellite/satellite.shtml
vertices =
t = from to (*PI)
r =
k =
a = rand2(PI*0.1, PI*1.9) x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)

生成一个帖在球上的伯努利双纽线

再将代码中的a = rand2(PI*0.1, PI*1.9)改为一个输入维度数据

vertices = D1: D2:

u = from  to (PI) D1
v = from to (*PI) D2 r =
k = x = r*(cos(v)*cos(u)*cos(k*u) - sin(u)*sin(k*u))
y = r*(cos(v)*sin(u)*cos(k*u) + cos(u)*sin(k*u))
z = r*sin(v)*cos(k*t)

这时生成一个曲面:

在这个曲面上,可以显示任意一个a值下生成的曲线.

(2)当上面代码中的k == 1时

t = from  to (*PI)
r =
k = 0.5
a = rand2(PI*0.1, PI*1.9)
x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)

再将代码中的a = rand2(PI*0.1, PI*1.9)改为一个输入维度数据

vertices = D1: D2:

u = from  to (*PI) D1
v = from to (*PI) D2 r =
k = 0.5 x = r*(cos(v)*cos(u)*cos(k*u) - sin(u)*sin(k*u))
y = r*(cos(v)*sin(u)*cos(k*u) + cos(u)*sin(k*u))
z = r*sin(v)*cos(k*t)

这时生成一个曲面:

数学图形(2.6)Satellit curve的更多相关文章

  1. 数学图形之将曲线(curve)转化成曲面管

    在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将 ...

  2. 数学图形(1.35)Kappa curve

    不知道这个曲线和那个运动品牌背靠背有什么关系.阿迪原先的商标是个三叶草,难道背靠背也是由数学图形来的? 以下是维基上的解释. In geometry, the kappa curve or Gutsc ...

  3. 数学图形(1.48)Cranioid curve头颅线

    这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...

  4. 数学图形(1.45)毛雷尔玫瑰(Maurer rose)

    毛雷尔玫瑰,也有的翻译是毛瑞尔,它是一种很漂亮的图形.玫瑰线的变异品种. 我没有找到其中文的解释,有兴趣可以看下维基上的相关页面. A Maurer rose of the rose r = sin( ...

  5. WHY数学图形可视化工具(开源)

    WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...

  6. 数学图形(1.49)Nephroid曲线

    昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...

  7. 数学图形之贝塞尔(Bézier)曲面

    前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...

  8. 数学图形(1.47)贝塞尔(Bézier)曲线

    贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线, ...

  9. 数学图形之Breather surface

    这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...

随机推荐

  1. float数据类型

    学习一门语言都要打好基础,前面的知识可能看着无聊,但是很重要,能够让我们打好坚实的基础,一定要掌握int.float.long.字符串.列表.元组.集合.字典.函数和类的基础常用的操作. 下面来看一看 ...

  2. css 画的动画表情

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. Java学习笔记之:Java Servlet 过滤器配置

    一.步骤 1.创建一类实现Filter接口,重写父类的方法 public class SimpleFilter implements Filter { public void destroy() { ...

  4. JAVA编程思想读书笔记(四)--对象的克隆

    接上篇JAVA编程思想读书笔记(三)--RTTI No1: 类的克隆 public class MyObject implements Cloneable { int i; public MyObje ...

  5. LaTeX算法排版 笔记

    方式一 需要包含的 \usepackage[noend]{algpseudocode} \usepackage{algorithmicx,algorithm} 源码 \begin{algorithm} ...

  6. Dijkstra【P2446】 [SDOI2010]大陆争霸

    Background 在一个遥远的世界里有两个国家:位于大陆西端的杰森国和位于大陆东端的克里斯国.两个国家的人民分别信仰两个对立的神:杰森国信仰象征黑暗和毁灭的神曾·布拉泽,而克里斯国信仰象征光明和永 ...

  7. elasticsearch中ik词库配置远程热加载

    1. 修改 IKAnalyzer.cfg.xml 配置文件中的<entry key="remote_ext_dict">http://127.0.0.1/xxx.txt ...

  8. POJ2157 Check the difficulty of problems 概率DP

    http://poj.org/problem?id=2151   题意 :t个队伍m道题,i队写对j题的概率为pij.冠军是解题数超过n的解题数最多的队伍之一,求满足有冠军且其他队伍解题数都大于等于1 ...

  9. sort大法好———自定义的注意事项!!!!!!

    众所周知,在c++中,sort是一个非常好用的排序函数,方便使用.可自定义的特性,让众多oier如我不能自拔.但是在自定义时也有一些大坑需要注意(敲黑板),下面就是oi入门的第不知道多少课,大家认真听 ...

  10. python3-开发进阶Flask的基础(2)

    知识回顾 1.django 和flask区别? 最大的不同就是django请求相关的数据,通过参数一个一个传递过去的,而flask就是先把放在某个地方,然后去取,这个东西叫上下文管理 2.什么是wsg ...