数学图形(2.6)Satellit curve
这曲线有点像鼓,绕在球上两头是开口的.
#http://www.mathcurve.com/courbes3d/satellite/satellite.shtml vertices = t = from to (*PI) r =
k = rand2(0.5, )
a = rand2(PI*0.1, PI*1.9) x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)
(1)当上面代码中的k == 1时
#http://www.mathcurve.com/courbes3d/satellite/satellite.shtml
vertices =
t = from to (*PI)
r =
k =
a = rand2(PI*0.1, PI*1.9) x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)
生成一个帖在球上的伯努利双纽线
再将代码中的a = rand2(PI*0.1, PI*1.9)改为一个输入维度数据
vertices = D1: D2: u = from to (PI) D1
v = from to (*PI) D2 r =
k = x = r*(cos(v)*cos(u)*cos(k*u) - sin(u)*sin(k*u))
y = r*(cos(v)*sin(u)*cos(k*u) + cos(u)*sin(k*u))
z = r*sin(v)*cos(k*t)
这时生成一个曲面:
在这个曲面上,可以显示任意一个a值下生成的曲线.
(2)当上面代码中的k == 1时
t = from to (*PI)
r =
k = 0.5
a = rand2(PI*0.1, PI*1.9)
x = r*(cos(a)*cos(t)*cos(k*t) - sin(t)*sin(k*t))
y = r*(cos(a)*sin(t)*cos(k*t) + cos(t)*sin(k*t))
z = r*sin(a)*cos(k*t)
再将代码中的a = rand2(PI*0.1, PI*1.9)改为一个输入维度数据
vertices = D1: D2: u = from to (*PI) D1
v = from to (*PI) D2 r =
k = 0.5 x = r*(cos(v)*cos(u)*cos(k*u) - sin(u)*sin(k*u))
y = r*(cos(v)*sin(u)*cos(k*u) + cos(u)*sin(k*u))
z = r*sin(v)*cos(k*t)
这时生成一个曲面:
数学图形(2.6)Satellit curve的更多相关文章
- 数学图形之将曲线(curve)转化成曲面管
在我关于数学图形的博客中,一开始讲曲线的生成算法.然后在最近的章节中介绍了圆环,还介绍了螺旋管以及海螺的生成算法.一类是曲线,一类是环面,为什么不将曲线变成环的图形,毕竟曲线看上去太单薄了,这一节我将 ...
- 数学图形(1.35)Kappa curve
不知道这个曲线和那个运动品牌背靠背有什么关系.阿迪原先的商标是个三叶草,难道背靠背也是由数学图形来的? 以下是维基上的解释. In geometry, the kappa curve or Gutsc ...
- 数学图形(1.48)Cranioid curve头颅线
这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...
- 数学图形(1.45)毛雷尔玫瑰(Maurer rose)
毛雷尔玫瑰,也有的翻译是毛瑞尔,它是一种很漂亮的图形.玫瑰线的变异品种. 我没有找到其中文的解释,有兴趣可以看下维基上的相关页面. A Maurer rose of the rose r = sin( ...
- WHY数学图形可视化工具(开源)
WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...
- 数学图形(1.49)Nephroid曲线
昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...
- 数学图形之贝塞尔(Bézier)曲面
前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...
- 数学图形(1.47)贝塞尔(Bézier)曲线
贝塞尔曲线又称贝兹曲线或贝济埃曲线,是由法国数学家Pierre Bézier所发现,由此为计算机矢量图形学奠定了基础.它的主要意义在于无论是直线或曲线都能在数学上予以描述. 上一节讲的是高次方程曲线, ...
- 数学图形之Breather surface
这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...
随机推荐
- python开发学习-day04(迭代器、生成器、装饰器、二分查找、正则)
s12-20160123-day04 *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: ...
- Codeforces Round #492 (Div. 2) [Thanks, uDebug!]
这次的题好奇怪哦... C - Tesla 思路:先把跟停车位相邻的车停进去,然后开始转圈... #include<bits/stdc++.h> #define LL long long ...
- jenkins pipelines 简介
1. 简介:A pipeline就是软件和质量保证进程中的一部分中的自动化连续操作.它可以看成是一连串的脚本. 操作组:就是把一系统的操作可以合成一个个的步骤,如果一个步骤失败,那么后续步骤便不会执行 ...
- Java 基础总结大全
Java 基础总结大全 一.基础知识 1.JVM.JRE和JDK的区别 JVM(Java Virtual Machine):java虚拟机,用于保证java的跨平台的特性. java语言是跨平台,jv ...
- socket的使用一
socket概念 socket层 理解socket Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协 ...
- POJ 1741 树分治
题目链接[http://poj.org/problem?id=1741] 题意: 给出一颗树,然后寻找点对(u,v)&&dis[u][v] < k的对数. 题解: 这是一个很经典 ...
- 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)
「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...
- 【最小表示法】BZOJ2882-工艺
[题目大意] 求一个循环数列的最小表示法. [思路] 最小表示法模板题.之前用SAM做的,MLE了hhhhh戳☆ #include<iostream> #include<cstdio ...
- 91网漏洞打包#越权+爆破+存储xss可打cookie
漏洞一.主站存在登录口爆破 抓包,爆破一下 爆破成功 漏洞二.检测app时一处存储xss 在app登录后 我要提问那里插入xss 然后弹窗 可以打到cookie 漏洞三.app个人资料处平行越权可查看 ...
- PAT甲级1021. Deepest Root
PAT甲级1021. Deepest Root 题意: 连接和非循环的图可以被认为是一棵树.树的高度取决于所选的根.现在你应该找到导致最高树的根.这样的根称为最深根. 输入规格: 每个输入文件包含一个 ...