事实再一次证明:本小菜在计算几何上就是个渣啊,唉,,,

题意:平面上n个点(n<=300),问任意四个点组成的四边形(保证四条边不相交)的最大面积是多少。

分析:

原文地址

1、第一思路是枚举四个点,以O(n4)的算法妥妥超时。

2、以下思路源自官方题解

  以O(n2)枚举每一条边,以这条边作为四边形的对角线(注意:这里所说的 对角线是指把四边形分成两部分的线,不考虑凹四边形可能出现的两个点在对角线同一侧的情况),以O(n)枚举每一个点,判断是在对角线所在直线的左侧还是 右侧。因为被对角线分割开的两三角形不相关,所以可以单独讨论:分别找出左右两侧的最大三角形,二者之和即为此边对应的最大四边形。整个算法为 O(n3)。

3、何为叉积?

  百度百科“叉积”解释的很详细,这里用到两条:

  一、axb 表示的是一个符合右手法则的、垂直于ab的向量c,|c|=|a|*|b|*sinθ,θ指向量a,b的夹角,即|c|是以a、b为边的平行四边形的面积——已知3点A,B,C,|BAxCA|==S(三角形ABC)*2。

  二、坐标表示法中,a(x1,y1),b(x2,y2)。c=axb=x1*y2-x2*y1,c的正负表示方向,正为上、负为下。而在三维中,方向不能简单的以正负表示,所以只能以一个向量的形式来描述:

  |  i , j , k |

  |x1,y1,z1|

  |x2,y2,z2|  i,j,k分别表示x轴、y轴、z轴上的单位向量,矩阵的解也就是c=axb

  这里只是二维平面,判断点在向量所在直线的哪一侧,就可以利用叉积的方向来区别。对角线AB,两侧各取一点C、D,必然有CAxCB=-DAxDB

注意:一开始不知道叉积的模即是三角形面积的两倍,就用axb=|a|*|b|*cosθ推S=|a|*|b|*sinθ,跑到第八组数据就超时了,纠结了好久,后来发现,原来每个三角形是在O(n3)的复杂度下求解的,多算一步就多一个O(n3),TLE的不冤T^T;

代码:

 #include <iostream>
#include <math.h>
#include <algorithm>
#include <stdio.h>
#include <string.h>
using namespace std;
#define eps 1e-10 #define maxn 310
typedef struct point{
double x,y;
}p;
p Point[maxn]; double cross(point p1,point p2,point p0){
return ((p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x))*0.5;
} double max(double a,double b){
if(a>b) return a;
return b;
}
int main()
{
int n;
while(~scanf("%d",&n)){
for(int i=;i<n;i++)
scanf("%lf %lf",&Point[i].x,&Point[i].y);
double ans=,lmax=,rmax;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
rmax=,lmax=;
for(int k=;k<n;k++){
if(k!=i && k!=j){
double s=cross(Point[i],Point[j],Point[k]);
if(s<eps){
lmax=max(lmax,-s);
}
else{
rmax=max(rmax,s);
}
}
}
if(lmax== || rmax==)continue;
ans=max(ans,(rmax+lmax));
}
}
printf("%lf\n",ans);
}
return ;
}

nyoj 952 最大四边形 计算几何 转载的更多相关文章

  1. nyoj 952 : 最大四边形 (计算几何)

    题目链接 任意四边形均可看作是两个三角形拼接得到的(即使是凹四边形),故 可以O(n^2)枚举所有的线段,然后对每条线段O(n)枚举线段端点外的其他点,用来更新以此线段构成的三角形的有向面积的最大值m ...

  2. nyoj 83-迷宫寻宝(二) (计算几何, 叉积)

    83-迷宫寻宝(二) 内存限制:10MB 时间限制:1000ms 特判: No 通过数:2 提交数:6 难度:5 题目描述: 一个叫ACM的寻宝者找到了一个藏宝图,它根据藏宝图找到了一个迷宫,这是一个 ...

  3. nyoj 83:迷宫寻宝(二)(计算几何)

    题目链接 枚举所有墙的2n个端点与宝物的位置作为一条线段(墙的端点必定与边界重合), 求出与之相交的最少线段数(判断线段相交时用跨立实验的方法),+1即为结果. #include<bits/st ...

  4. HDU3629(凸四边形的个数)

    HDU 3629 计算几何 题目描述:给你n个点(4~700), 问你能够成多少个不同的凸四边形. 解题报告: 暴力的话C(700,4)必然超时,发现,任何一个凹包必然是其中一点在其它3点构成的三角形 ...

  5. ACM之路(转载)

    转载自:https://www.cnblogs.com/tianjintou/p/4139416.html 要注意,ACM的竞赛性强,因此自己应该和自己的实际应用联系起来. 适合自己的才是好的,有的人 ...

  6. 【转载】关于OpenGL的图形流水线

    本文转载自 http://blog.csdn.net/racehorse/article/details/6593719 GLSL教程 这是一些列来自lighthouse3d的GLSL教程,非常适合入 ...

  7. android fragment 的用法以及与activity的交互和保存数据的方法,包括屏幕切换(转载)!

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/37992017 1.管理Fragment回退栈 类似与Android系统为Acti ...

  8. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  9. 转载 ACM训练计划

    leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...

随机推荐

  1. MySQL中SYSDATE()和NOW()函数的区别和联系

    MySQL中有5个函数需要计算当前时间的值: NOW.返回时间,格式如:2012-09-23 06:48:28 CURDATE,返回时间的日期,格式如:2012-09-23 CURTIME,返回时间, ...

  2. sed替换换行符“\n”

    linux sed命令,如何替换换行符“\n” 在一次sed使用中,执行命令: sed "s/\n//g" file 1 发现,没起到任何效果. 后来,经查sed官方用户手册,才得 ...

  3. 取出html中指定id的元素的内容

    private void btnGet_Click(object sender, EventArgs e) { string PageUrl = "http://www.cnblogs.co ...

  4. 深拷贝(deep clone)与浅拷贝(shallow clone)

    深拷贝(deep clone)与浅拷贝(shallow clone) 浅复制(浅克隆):被复制对象的所有变量都含有与原来的对象相同的值,而所有的对其他对象的引用仍然指向原来的对象.换言之,浅复制仅仅复 ...

  5. iOS:CoreData数据库的使用三(数据库和tableView表格一起使用)

    CoreData数据库是用来持久性存储数据的,那么,我们再从该数据库中取出数据干什么呢?明显的是为了对数据做操作,这个过程中可以将它们直观的显示出来,即通过表格的形式显示出来.CoreData配合ta ...

  6. ViewFlipper 淘宝头条 轮播 自动切换

    ViewFlipper介绍 ViewFilpper类继承于ViewAnimator,而ViewAnimator类继承于FrameLayout.     ViewAnimator: Base class ...

  7. [ACM] POJ 2524 Ubiquitous Religions (并查集)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 23093   Accepted:  ...

  8. Mysql导出逗号分隔的csv文件

    CleverCode在实际的工作中.常常须要将一些报表.或者日志数据等导出来,假设直接做页面,假设次数也不是非常多,需求也不同.所以直接导出csv文件,更加直观. 1 导出csv文件 1.1 语句格式 ...

  9. Discuz常见小问题-如何设置为人工审核

    全局-注册与访问控制-人工审核    

  10. HDU 4757

    可持久化trie树.不会可持久化数据结构的话推荐先看陈立杰的论文.先掌握可持久化线段树和可持久化trie树. //可持久化trie树,题目已知一棵树,每个点有点权,询问一对点路径上点权与给定值异或的最 ...