问题:

You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all the rivers lie between them. Fortunately, there is one “automatic” boat moving smoothly in each river. When you arrive the left bank of a river, just wait for the boat, then go with it. You’re so slim that carrying you does not change the speed of any boat.

Days and days after, you came up with the following question: assume each boat is independently placed at random at time 0, what is the expected time to reach B from A? Your walking speed is always 1. To be more precise, for a river of length L, the distance of the boat (which could be regarded as a mathematical point) to the left bank at time 0 is uniformly chosen from interval [0, L], and the boat is equally like to be moving left or right, if it’s not precisely at the river bank.

Input

There will be at most 10 test cases. Each case begins with two integers n and D, where n (0 ≤ n ≤ 10) is the number of rivers between A and B, D (1 ≤ D ≤ 1000) is the distance from A to B. Each of the following n lines describes a river with 3 integers: p, L and v (0 ≤ p < D, 0 < L ≤ D, 1 ≤ v ≤ 100). p is the distance from A to the left bank of this river, L is the length of this river, v is the speed of the boat on this river. It is guaranteed that rivers lie between A and B, and they don’t overlap. The last test case is followed by n = D = 0, which should not be processed.

Output

For each test case, print the case number and the expected time, rounded to 3 digits after the decimal point. Print a blank line after the output of each test case.

Sample Input

1 1

0 1 2

0 1

0 0

Sample Output

Case 1: 1.000

Case 2: 1.000

题目大意:

有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,给出N条河的信息,包括起始坐标p,宽度L,以及船的速度v。船会往返在河的两岸,人到达河岸时,船的位置是随机的(往返中)。问说人达到公司所需要的期望时间。

思路:

过每条河最坏的情况是t=3*L/v; 即去的时候船刚刚走。

过没条河最优的情况是t=L/v;    即去的时候船刚刚来。

由于船是均匀发布的,符合线性性质,所以平均下来,过每条河的时间t=2*L/v。

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
int main()
{
int n,D,dis,p,l,v,Case=;
double ans;
while(~scanf("%d%d",&n,&D)){
if(n==&&D==) return ;
dis=;ans=;
while(n--){
scanf("%d%d%d",&p,&l,&v);
ans=ans+2.0*l/v;
D-=l;
}
ans=ans+1.0*D;
printf("Case %d: %.3lf\n\n",++Case,ans);
}
return ;
}

Uva12230Crossing Rivers (数学期望)的更多相关文章

  1. Uva12230Crossing Rivers 数学

    Uva12230Crossing Rivers 问题: You live in a village but work in another village. You decided to follow ...

  2. HDU3232 Crossing Rivers 数学期望问题

    Crossing Rivers                                                                                     ...

  3. Uva - 12230 Crossing Rivers (数学期望)

    你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在 ...

  4. UVA12230 Crossing Rivers (数学期望)

    题目链接 题意翻译 一个人每天需要从家去往公司,然后家与公司的道路是条直线,长度为 \(D\). 同时路上有 \(N\) 条河,给出起点和宽度\(W_i\) , 过河需要乘坐速度为\(V_i\) 的渡 ...

  5. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  6. hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)

    Problem Description   You live in a village but work in another village. You decided to follow the s ...

  7. UVa 12230 && HDU 3232 Crossing Rivers (数学期望水题)

    题意:你要从A到B去上班,然而这中间有n条河,距离为d.给定这n条河离A的距离p,长度L,和船的移动速度v,求从A到B的时间的数学期望. 并且假设出门前每条船的位置是随机的,如果不是在端点,方向也是不 ...

  8. UVa 12230 - Crossing Rivers(数学期望)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. 2019暑期集训第二讲 - 组合数学&概率&数学期望

    A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合 ...

随机推荐

  1. 解题报告:poj1321 棋盘问题 - 搜索

    棋盘问题 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 51262 Accepted: 24785 Description 在一 ...

  2. [WCF安全3]使用wsHttpBinding构建基于SSL与UserName授权的WCF应用程序

    上一篇文章中介绍了如何使用wsHttpBinding构建UserName授权的WCF应用程序,本文将为您介绍如何使用wsHttpBinding构建基于SSL的UserName安全授权的WCF应用程序. ...

  3. Java Collections Framework 汇总

    1. Java Collections Framework Java集合框架概览 2. Java Collections Framework 之 RandomAccess接口 3. 关于ArrayLi ...

  4. Linux安装ipvsadm

    一.介绍 ipvs称之为IP虚拟服务器(IP Virtual Server,简写为IPVS).是运行在LVS下的提供负载平衡功能的一种技术 二.安装 1.下载 http://www.linuxvirt ...

  5. [Vue]webpack的require与require.context

    1.require 1.1完整路径的require语句: require('tools'); //preset alias tools require('./js/main'); 1.2带表达式的 r ...

  6. server2012/win8 卸载.net framework 4.5后 无法进入系统桌面故障解决

    故障:服务器装的是windows2012 standard(2012版本从低到高依次为Foundation.Essentials.StandardDatacenter,以及它们的升级版R2),由于要安 ...

  7. 转载:Mongodb start

    Mongodb 操作 Start MongoDB The MongoDB instance stores its data files in the /var/lib/mongo and its lo ...

  8. 十九 Python分布式爬虫打造搜索引擎Scrapy精讲—css选择器

    css选择器 1. 2. 3.  ::attr()获取元素属性,css选择器 ::text获取标签文本 举例: extract_first('')获取过滤后的数据,返回字符串,有一个默认参数,也就是如 ...

  9. Centos6安装MariaDB-yum方式

    1.创建安装目录: mkdir /data/mysql/ mkdir /data/mysql/datafile mkdir /data/mysql/logfile 2.创建用户: useradd -r ...

  10. SCM-MANAGER-禁用用户

    用管理远用户登录到scm-manager的管理界面http://*.*.*.*:8081/ 设置目标用户为禁用 验证 非 “active” 状态 目标用户客户端不能pull 一直提示登录