Uva12230Crossing Rivers (数学期望)
问题:
You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all the rivers lie between them. Fortunately, there is one “automatic” boat moving smoothly in each river. When you arrive the left bank of a river, just wait for the boat, then go with it. You’re so slim that carrying you does not change the speed of any boat.
Days and days after, you came up with the following question: assume each boat is independently placed at random at time 0, what is the expected time to reach B from A? Your walking speed is always 1. To be more precise, for a river of length L, the distance of the boat (which could be regarded as a mathematical point) to the left bank at time 0 is uniformly chosen from interval [0, L], and the boat is equally like to be moving left or right, if it’s not precisely at the river bank.
Input
There will be at most 10 test cases. Each case begins with two integers n and D, where n (0 ≤ n ≤ 10) is the number of rivers between A and B, D (1 ≤ D ≤ 1000) is the distance from A to B. Each of the following n lines describes a river with 3 integers: p, L and v (0 ≤ p < D, 0 < L ≤ D, 1 ≤ v ≤ 100). p is the distance from A to the left bank of this river, L is the length of this river, v is the speed of the boat on this river. It is guaranteed that rivers lie between A and B, and they don’t overlap. The last test case is followed by n = D = 0, which should not be processed.
Output
For each test case, print the case number and the expected time, rounded to 3 digits after the decimal point. Print a blank line after the output of each test case.
Sample Input
1 1
0 1 2
0 1
0 0
Sample Output
Case 1: 1.000
Case 2: 1.000
题目大意:
有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,给出N条河的信息,包括起始坐标p,宽度L,以及船的速度v。船会往返在河的两岸,人到达河岸时,船的位置是随机的(往返中)。问说人达到公司所需要的期望时间。
思路:
过每条河最坏的情况是t=3*L/v; 即去的时候船刚刚走。
过没条河最优的情况是t=L/v; 即去的时候船刚刚来。
由于船是均匀发布的,符合线性性质,所以平均下来,过每条河的时间t=2*L/v。
#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
int main()
{
int n,D,dis,p,l,v,Case=;
double ans;
while(~scanf("%d%d",&n,&D)){
if(n==&&D==) return ;
dis=;ans=;
while(n--){
scanf("%d%d%d",&p,&l,&v);
ans=ans+2.0*l/v;
D-=l;
}
ans=ans+1.0*D;
printf("Case %d: %.3lf\n\n",++Case,ans);
}
return ;
}
Uva12230Crossing Rivers (数学期望)的更多相关文章
- Uva12230Crossing Rivers 数学
Uva12230Crossing Rivers 问题: You live in a village but work in another village. You decided to follow ...
- HDU3232 Crossing Rivers 数学期望问题
Crossing Rivers ...
- Uva - 12230 Crossing Rivers (数学期望)
你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在 ...
- UVA12230 Crossing Rivers (数学期望)
题目链接 题意翻译 一个人每天需要从家去往公司,然后家与公司的道路是条直线,长度为 \(D\). 同时路上有 \(N\) 条河,给出起点和宽度\(W_i\) , 过河需要乘坐速度为\(V_i\) 的渡 ...
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)
Problem Description You live in a village but work in another village. You decided to follow the s ...
- UVa 12230 && HDU 3232 Crossing Rivers (数学期望水题)
题意:你要从A到B去上班,然而这中间有n条河,距离为d.给定这n条河离A的距离p,长度L,和船的移动速度v,求从A到B的时间的数学期望. 并且假设出门前每条船的位置是随机的,如果不是在端点,方向也是不 ...
- UVa 12230 - Crossing Rivers(数学期望)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 2019暑期集训第二讲 - 组合数学&概率&数学期望
A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合 ...
随机推荐
- Java进阶之自动拆箱与自动装箱
序. java基本类型介绍 java中,基本数据类型一共有8种,详细信息如下表: 类型 大小 范围 默认值 byte 8 -128 - 127 0 short 16 -32768 - 32768 0 ...
- HDFS读写流程learning
有许多对流程进行描述的博客,但是感觉还是应当学习一遍代码,不然总感觉怪怪的,https://blog.csdn.net/popsuper1982/article/details/51615285,首先 ...
- thinkphp3.2.3定时任务 不能获取本模块config, 不能获取本模块的其他配置
一开始创建就有一个home模块再创建一个Data模块 定时任务在/Application/Common/Conf/crons.php中,这里不讲怎么创建定时任务. Data模块的配置文件路径如下/Ap ...
- char数组
*****************************************************************char 类型的数组(c语言中是没有字符串的)char name[20 ...
- vue项目搭建 (二) axios 封装篇
vue项目搭建 (二) axios 封装篇 项目布局 vue-cli构建初始项目后,在src中进行增删修改 // 此处是模仿github上 bailicangdu 的 ├── src | ├── ap ...
- ie下的bug之button
场景描述: 现在页面设计是都喜欢自定义按钮样式,某日接收到页面发现在ie下有bug,上代码: <div> <button><span><a href=&quo ...
- nodejs利用express操作mysql增删改查
如果不知道怎么连接数据库的请看http://www.cnblogs.com/complete94/p/6714757.html 我当大家都知道怎么连接数据库了,那么 我们开始吧 var express ...
- SSM整合Redis
前言 服务端缓存的意义大多数在于减轻数据库压力,提供响应速度,而缺点也是显而易见的,会带来缓存与数据库一致性问题.当然,Redis还可以作为分布式锁. Redis 想在项目中使用Redis需要做的事情 ...
- HDU 2669 Romantic (扩展欧几里得定理)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- CMDB后台管理(AutoServer)
1.表结构设计 from django.db import models class UserProfile(models.Model): """ 用户信息 " ...