问题:

You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all the rivers lie between them. Fortunately, there is one “automatic” boat moving smoothly in each river. When you arrive the left bank of a river, just wait for the boat, then go with it. You’re so slim that carrying you does not change the speed of any boat.

Days and days after, you came up with the following question: assume each boat is independently placed at random at time 0, what is the expected time to reach B from A? Your walking speed is always 1. To be more precise, for a river of length L, the distance of the boat (which could be regarded as a mathematical point) to the left bank at time 0 is uniformly chosen from interval [0, L], and the boat is equally like to be moving left or right, if it’s not precisely at the river bank.

Input

There will be at most 10 test cases. Each case begins with two integers n and D, where n (0 ≤ n ≤ 10) is the number of rivers between A and B, D (1 ≤ D ≤ 1000) is the distance from A to B. Each of the following n lines describes a river with 3 integers: p, L and v (0 ≤ p < D, 0 < L ≤ D, 1 ≤ v ≤ 100). p is the distance from A to the left bank of this river, L is the length of this river, v is the speed of the boat on this river. It is guaranteed that rivers lie between A and B, and they don’t overlap. The last test case is followed by n = D = 0, which should not be processed.

Output

For each test case, print the case number and the expected time, rounded to 3 digits after the decimal point. Print a blank line after the output of each test case.

Sample Input

1 1

0 1 2

0 1

0 0

Sample Output

Case 1: 1.000

Case 2: 1.000

题目大意:

有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,给出N条河的信息,包括起始坐标p,宽度L,以及船的速度v。船会往返在河的两岸,人到达河岸时,船的位置是随机的(往返中)。问说人达到公司所需要的期望时间。

思路:

过每条河最坏的情况是t=3*L/v; 即去的时候船刚刚走。

过没条河最优的情况是t=L/v;    即去的时候船刚刚来。

由于船是均匀发布的,符合线性性质,所以平均下来,过每条河的时间t=2*L/v。

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
int main()
{
int n,D,dis,p,l,v,Case=;
double ans;
while(~scanf("%d%d",&n,&D)){
if(n==&&D==) return ;
dis=;ans=;
while(n--){
scanf("%d%d%d",&p,&l,&v);
ans=ans+2.0*l/v;
D-=l;
}
ans=ans+1.0*D;
printf("Case %d: %.3lf\n\n",++Case,ans);
}
return ;
}

Uva12230Crossing Rivers (数学期望)的更多相关文章

  1. Uva12230Crossing Rivers 数学

    Uva12230Crossing Rivers 问题: You live in a village but work in another village. You decided to follow ...

  2. HDU3232 Crossing Rivers 数学期望问题

    Crossing Rivers                                                                                     ...

  3. Uva - 12230 Crossing Rivers (数学期望)

    你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在 ...

  4. UVA12230 Crossing Rivers (数学期望)

    题目链接 题意翻译 一个人每天需要从家去往公司,然后家与公司的道路是条直线,长度为 \(D\). 同时路上有 \(N\) 条河,给出起点和宽度\(W_i\) , 过河需要乘坐速度为\(V_i\) 的渡 ...

  5. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  6. hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)

    Problem Description   You live in a village but work in another village. You decided to follow the s ...

  7. UVa 12230 && HDU 3232 Crossing Rivers (数学期望水题)

    题意:你要从A到B去上班,然而这中间有n条河,距离为d.给定这n条河离A的距离p,长度L,和船的移动速度v,求从A到B的时间的数学期望. 并且假设出门前每条船的位置是随机的,如果不是在端点,方向也是不 ...

  8. UVa 12230 - Crossing Rivers(数学期望)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. 2019暑期集训第二讲 - 组合数学&概率&数学期望

    A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合 ...

随机推荐

  1. 解题报告:hdu1284 钱币兑换问题

    2017-09-03 19:03:06 writer:pprp 状态定义: dp[i][j] = x 代表的是 用前i 中硬币构造 j 美分的方法数目: 初始化: dp[0][0] = 1 状态转移: ...

  2. gdb 调试coredump文件过程:

    第一步:首先需要一个进程的coredump文件,怎么搞出coredump文件呢? 1. ps -fax|grep                 进程名称 找到进程的pid 2.gdb -p pid ...

  3. asp.net core开发注意事项

    1.类库的创建尽量选择.net standard. 如果选择.net core 则.net framework不能调用该类库, .net core和.net framework都可以调用.net st ...

  4. Devops 到底是什么?

    Devops 到底是什么? 过去一年以来,一批来自欧美的.不墨守陈规的系统管理员和开发人员一直在谈论一个新概念:DevOps.DevOps就是开发(Development)和运维(Operations ...

  5. jQuery中兄弟元素、子元素和父元素的获取

    我们这里主要总结jQuery中对某元素的兄弟元素.子元素和父元素的获取,原声的Javascript代码对这些元素的获取比较麻烦一些,而jQuery正好对这些方法进行封装,让我们更加方便的对这些元素进行 ...

  6. ItemsControl的应用

    ItemsControl是集合类控件的基类,如:ListBox.ComboBox.TreeView 所以,我们可以直接应用“ItemsControl”自定义我们“需要的”集合类型控件

  7. SpringAOP源码分析总结

    1.Advisor(增强器):充当Advice和Pointcut的适配器,类似使用Aspect的@Aspect注解的类(前一章节所述).一般有advice和pointcut属性. 祖先接口为org.s ...

  8. 剑指offer算法总结

    剑指offer算法学习总结 节选剑指offer比较经典和巧妙的一些题目,以便复习使用.一部分题目给出了完整代码,一部分题目比较简单直接给出思路.但是不保证我说的思路都是正确的,个人对算法也不是特别在行 ...

  9. javascript curry 柯里化函数 仿lodash的curry

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. RabbitMQ其他(八)

    1 RabbitMQ消息队列的小伙伴: ProtoBuf(Google Protocol Buffer) 什么是ProtoBuf? 一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,或者说序 ...