BSGS算法+逆元 POJ 2417 Discrete Logging
POJ 2417 Discrete Logging
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 4860 | Accepted: 2211 |
Description
B^l==N(mod p)
Input
Output
Sample Input
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
/*BSGS算法+逆元*/
这个主要是用来解决这个题: A^x=B(mod C)(C是质数),都是整数,已知A、B、C求x。 我在网上看了好多介绍,觉得他们写得都不够碉,我看不懂…于是我也来写一发。 先把x=i*m+j,其中m=ceil(sqrt(C)),(ceil是向上取整)。 这样原式就变为A^(i*m+j)=B(mod C), 再变为A^j=B*A^(-m*i) (mod C), 先循环j=~(C-),把(A^j,j)加入hash表中,这个就是Baby Steps 下面我们要做的是枚举等号右边,从hash表中找看看有没有,有的话就得到了一组i j,x=i*m+j,得到的这个就是正确解。 所以,接下来要解决的就是枚举B*A^(-m*i) (mod C)这一步(这就是Giant Step A^(-m*i)相当于1/(A^(m*i)),里面有除法,在mod里不能直接用除法,这时候我们就要求逆元。 /*百度百科: 若ax≡1 mod f, 则称a关于模f的乘法逆元为x。也可表示为ax≡1(mod f)。
当a与f互素时,a关于模f的乘法逆元有唯一解。如果不互素,则无解。如果f为素数,则从1到f-1的任意数都与f互素,即在1到f-1之间都恰好有一个关于模f的乘法逆元。
*/ 然后我们用超碉的exgcd求逆元,exgcd(扩展欧几里德算法)就是在求AB的最大公约数z的同时,求出整数x和y,使xA+yB=z。算法实现就是gcd加几个语句。
然后我们再来看一下exgcd怎么求逆元:
对xA+yB=z, 变成这样xA = z - yB,取B=C(C就是我们要mod的那个) 推导出 xA % C = z %C 只要 z%C== 时,就可以求出A的逆元x 但用exgcd求完,x可能是负数,还需要这样一下:x=(x%C+C)%C //--exgcd介绍完毕-- 再看我们的题目, exgcd(A^(m*i) , C)=z,当C是质数的时候z肯定为1,这样exgcd求得的x就是逆元了。 因为x就是A^(m*i)的逆元,P/(A^(m*i))=P*x,所以 B*A^(-m*i) = B/(A^(m*i)) = B*x(mod C) 这样我们的式子A^j=B*A^(-m*i) (mod C)的等号右边就有了,就是B*x,就问你怕不怕! 枚举i,求出右边在hash里找,找到了就返回,无敌! /*---------分割线-----------------------*/
#include<cmath>
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define mod 100007
#define ll long long
struct hash
{
ll a[mod+],v[mod+];
hash(){memset(a,-,sizeof(a));}
int locate(ll x)
{
ll l=x%mod;
while(a[l]!=x&&a[l]!=-) l=(l+)%mod;
return l;
}
void insert(ll x,int i)
{
ll l=locate(x);
if(a[l]==-)
{
a[l]=x;
v[l]=i;
}
}
int get(ll x)
{
ll l=locate(x);
return (a[l]==x)?v[l]:-;
}
void clear()
{
memset(a,-,sizeof(a));
}
}s;
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=;
y=;
return ;
}
exgcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-a/b*y;
}
int main()
{
ll p,b,n;
while(scanf("%I64d%I64d%I64d",&p,&b,&n)==)
{
s.clear();
ll m=ceil(sqrt(p));
ll t=;
for(int i=;i<m;++i)
{
s.insert(t,i);
t=(t*b)%p;
}
ll d=,ans=-;
ll x,y;
for(int i=;i<m;++i)
{
exgcd(d,p,x,y);
x=((x*n)%p+p)%p;
y=s.get(x);
if(y!=-)
{
ans=i*m+y;
break;
}
d=(d*t)%p;
}
if(ans==-)
printf("no solution\n");
else printf("%I64d\n",ans);
} return ;
}
BSGS算法+逆元 POJ 2417 Discrete Logging的更多相关文章
- POJ - 2417 Discrete Logging(Baby-Step Giant-Step)
d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...
- POJ 2417 Discrete Logging ( Baby step giant step )
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3696 Accepted: 1727 ...
- POJ 2417 Discrete Logging (Baby-Step Giant-Step)
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2819 Accepted: 1386 ...
- poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2831 Accepted: 1391 ...
- POJ 2417 Discrete Logging BSGS
http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...
- POJ 2417 Discrete Logging(离散对数-小步大步算法)
Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...
- POJ 2417 Discrete Logging 离散对数
链接:http://poj.org/problem?id=2417 题意: 思路:求离散对数,Baby Step Giant Step算法基本应用. 下面转载自:AekdyCoin [普通Baby S ...
- poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)
http://poj.org/problem?id=2417 A^x = B(mod C),已知A,B.C.求x. 这里C是素数,能够用普通的baby_step. 在寻找最小的x的过程中,将x设为i* ...
- POJ 2417 Discrete Logging
http://www.cnblogs.com/jianglangcaijin/archive/2013/04/26/3045795.html 给p,a,b求a^n==b%p #include<a ...
随机推荐
- tensorflow.nn.bidirectional_dynamic_rnn()函数的用法
在分析Attention-over-attention源码过程中,对于tensorflow.nn.bidirectional_dynamic_rnn()函数的总结: 首先来看一下,函数: def bi ...
- 关于[神州数码信息安全DCN杯/信息安全管理与评估]的一些经验之谈
前阵子参加了神州数码的比赛,赛后有如下经验分享,给还没参加过的朋友分享一下心德以及要注意的坑. 先科普一下这个比赛的三个阶段: 第一阶段主要是考网络部分的,例如搭建wifi以及防火墙诸如此类的设备. ...
- Metlnfo CMS全版本漏洞收集
根据https://www.seebug.org/appdir/MetInfo 进行书写. [版本:Metlnfo 4.0] 漏洞标题:Metlnfo cms任意用户密码修改 漏洞文件:member/ ...
- 一款线程安全、基本功能齐全的STL
MiniSTL 目前正在完成一个STL,主要想通过该项目锻炼C++编程.模板编程.熟悉STL.锻炼数据结构和算法能力. 项目的目标是实现STL的几大构件+线程安全.项目过程中主要参考SGI STL源码 ...
- 机顶盒 gettimeofday()获取毫秒溢出
最近在写代码的时候遇见了一个bug,在获取当前时间戳的毫秒时,我自己测试的时候总是OK的,但是测试那边总是测不对,之前一直以为是因为我存储的类型的不对,从long long类型从lld改成llu,然后 ...
- 认识hasLayout——IE浏览器css bug的一大罪恶根源 (转)
认识hasLayout--IE浏览器css bug的一大罪恶根源 转 什么是hasLayout?hasLayout是IE特有的一个属性.很多的ie下的css bug都与其息息相关.在ie中,一个元素要 ...
- apache Apache winnt_accept: Asynchronous AcceptEx failed 错误的解决
httpd配置文件中添加: AcceptFilter http noneAcceptFilter https none apache优化: http://blog.csdn.net/hytfly/ar ...
- IEEEXtreme 10.0 - Goldbach's Second Conjecture
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Goldbach's Second Conjecture 题目来源 第10届IEEE极限编程大赛 https ...
- pyqt5简单登陆界面
登陆界面姓名输入错误会弹出错误信息.正确就会弹出第二个窗体. # -*- coding:utf-8 -*- import sys from PyQt5.QtWidgets import Q ...
- grep 同时排除多个关键字
不说废话, 例如需要排除 abc.txt 中的 mmm nnn grep -v 'mmm\|nnn' abc.txt 再举个例子,需要确定mac 的本机ip地址, 显然直接可以输入 ifcon ...