Hash Perfectly

题目连接:

http://acm.uestc.edu.cn/#/problem/show/1314

Description

In computing, a hash table is a data structure used to implement an associative array, a structure that can map keys to values.

A hash table uses a hash function to compute an index into an array of buckets or slots, from which the desired value can be found. A common hash function is \(index=key\ \%\ array\\_size\) (\(\%\) is modulo operator), but it may cause some collisions.

For example, if keys are \(1,2,6,10\), and we choose \(array\\_size=4\), the indexes will be \(1,2,2,2\), where some collisions happen.

To solve the collision, we can use the method known as separate chaining with linked lists.

Seeing the example again, when we try to insert \(6\), because its index \(2\) is used, we build a linked list in index \(2\), and there would be \(2\rightarrow 6\) in index \(2\). Insert \(10\) next, there would be a linked list \(2\rightarrow 6\rightarrow 10\) in index 2.

To calculate the efficiency of the hash function, we define a value called \(ASL\) (Average search length):

\[ASL=\frac{1}{n}\sum_{i=1}^{n}c_i
\]

\(c_i\) is the number of times to compare when we search the \(i^{th}\) key.

Using the example above again, \(c_1=1,c_2=1,c_3=2,c_4=3\), so \(ASL=\frac{1}{4}(1+1+2+3)=1.75\).

It's obvious that \(ASL\) can minimize when we choose a sufficiently large \(array\\_size\), but in fact due to the limitation of memory, \(array\\_size\) must be no more than \(limit\), i.e., \(1\leq array\\_size\leq limit\).

Now you are given n keys, try to choose a proper \(array\\_size\) to minimize \(ASL\). If there are multiple answers, choose the smallest one.

Input

The first line contains two integers \(n\) and \(limit\).

The second line contains \(n\) integers, where \(i^{th}\) integer indicates the \(i^{th}\) key.

\(1\leq n, limit, key\leq 2*10^5\)

Output

Print the smallest \(array\\_size\) which can minimize \(ASL\).

Sample Input

4 4

1 2 6 10

Sample Output

3

Hint

题意

现在你有n个数,然后哈希是指b[i]=a[i]%k

现在让你找到一个合适的k,使得冲突的对数最少,这个k需满足0<=k<=limit

题解:

若一个位置冲突了k次,则对n*ASL的贡献是k*(k+1)/2,相当于k个数两两冲突的对数加k。

对于两个数a,b,他们只会在(a-b) % array_size == 0时冲突。

利用FFT,可把所有a-b的可能取值对应的个数算出来。对于每个array_size,算出a-b=array_size, a-b=2array_size, a-b=3array_size, …的个数,就可以直接得到ASL的值。

复杂度O(nlogn)

代码

#include<bits/stdc++.h>

using namespace std;

const int N = 600040;
const double pi = acos(-1.0); int len=1<<19; struct Complex
{
double r,i;
Complex(double r=0,double i=0):r(r),i(i) {};
Complex operator+(const Complex &rhs)
{
return Complex(r + rhs.r,i + rhs.i);
}
Complex operator-(const Complex &rhs)
{
return Complex(r - rhs.r,i - rhs.i);
}
Complex operator*(const Complex &rhs)
{
return Complex(r*rhs.r - i*rhs.i,i*rhs.r + r*rhs.i);
}
} va[N],vb[N]; void rader(Complex F[],int len) //len = 2^M,reverse F[i] with F[j] j为i二进制反转
{
int j = len >> 1;
for(int i = 1;i < len - 1;++i)
{
if(i < j) swap(F[i],F[j]); // reverse
int k = len>>1;
while(j>=k)
{
j -= k;
k >>= 1;
}
if(j < k) j += k;
}
} void FFT(Complex F[],int len,int t)
{
rader(F,len);
for(int h=2;h<=len;h<<=1)
{
Complex wn(cos(-t*2*pi/h),sin(-t*2*pi/h));
for(int j=0;j<len;j+=h)
{
Complex E(1,0); //旋转因子
for(int k=j;k<j+h/2;++k)
{
Complex u = F[k];
Complex v = E*F[k+h/2];
F[k] = u+v;
F[k+h/2] = u-v;
E=E*wn;
}
}
}
if(t==-1) //IDFT
for(int i=0;i<len;++i)
F[i].r/=len;
} void Conv(Complex a[],Complex b[],int len) //求卷积
{
FFT(a,len,1);
FFT(b,len,1);
for(int i=0;i<len;++i) a[i] = a[i]*b[i];
FFT(a,len,-1);
}
int n,limit;
int a[N];
long long num[N],sum[N];
void solve()
{
scanf("%d%d",&n,&limit);
int Mx = 0;
for(int i=0;i<n;i++)
{
int x;scanf("%d",&a[i]);
va[a[i]].r+=1;
vb[200000-a[i]].r+=1;
}
Conv(va,vb,len);
for(int i=0;i<=200000;i++)
num[i]=(long long)(va[200000+i].r+0.5);
long long ans1=1e18,ans2=0;
for(int i=1;i<=limit;i++)
{
long long cnt = 0;
for(int j=i;j<=len;j+=i)
cnt+=num[j];
if(cnt<ans1)
{
ans1=cnt;
ans2=i;
}
}
cout<<ans2<<endl;
}
int main()
{
solve();
return 0;
}

CDOJ 1314 Hash Perfectly FFT的更多相关文章

  1. LA4671 K-neighbor substrings(FFT + 字符串Hash)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/19225 Description The Hamming distance between two s ...

  2. 卷积FFT、NTT、FWT

    先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...

  3. FFT初步学习小结

    FFT其实没什么需要特别了解的,了解下原理,(特别推荐算法导论上面的讲解),模板理解就行了.重在运用吧. 处理过程中要特别注意精度. 先上个练习的地址吧: http://vjudge.net/vjud ...

  4. UOJ#335. 【清华集训2017】生成树计数 多项式,FFT,下降幂,分治

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ335.html 前言 CLY大爷随手切这种题. 日常被CLY吊打系列. 题解 首先从 pruffer 编码的角度考虑这个问 ...

  5. 【BZOJ】3160: 万径人踪灭 FFT+回文串

    [题意]给定只含'a'和'b'字符串S,求不全连续的回文子序列数.n<=10^5. [算法]FFT+回文串 [题解]不全连续的回文子序列数=回文子序列总数-回文子串数. 回文子串数可以用回文串算 ...

  6. UVALive - 4671 K-neighbor substrings (FFT+哈希)

    题意:海明距离的定义:两个相同长度的字符串中不同的字符数.现给出母串A和模式串B,求A中有多少与B海明距离<=k的不同子串 分析:将字符a视作1,b视作0.则A与B中都是a的位置乘积是1.现将B ...

  7. [poj] 3690 Constellations || 矩阵hash

    原题 在大矩阵里找有几个小矩阵出现过,多组数据 将t个矩阵hash值放入multiset,再把大矩阵中每个hash值从multiset里扔出去,这样最后剩在multiset里的值就是没有找到的小矩阵, ...

  8. FFT题集

    FFT学习参考这两篇博客,很详细,结合这看,互补. 博客一 博客二 很大一部分题目需要构造多项式相乘来进行计数问题. 1. HDU 1402 A * B Problem Plus 把A和B分别当作多项 ...

  9. BZOJ4259:残缺的字符串(FFT与字符串匹配)

    很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两 ...

随机推荐

  1. 用C#实现对MSSqlServer数据库的增删改查---DAL层

    说明:本人完成的工作是对传感器--超声波物位计进行硬件集成,上位机通过串口接收传感器数据并将其存到数据库中:在DAL层实现对数据库的增删改查,其中包含两个数据表分别是WaterLevelSet表和Wa ...

  2. sendEmail实现邮件报警

    安装 wget http://caspian.dotconf.net/menu/Software/SendEmail/sendEmail-v1.56.tar.gz 或者点击下载 tar -xf sen ...

  3. Webcollector应用(一)

    webcollector是一个开源的Java网络爬虫框架.最近的爬虫改用java写了,对这一周的工作进行简要总结.对于内部机制了解不深入,主要侧重在应用. 一.环境搭建 需要安装一个webcollec ...

  4. 最全Pycharm教程(26)——Pycharm搜索导航之文件名、符号名搜索(转)

    1.准备一个工程 向你的工程中添加一个Python文件,并输入一些源码,例如: 2.转到对应文件.类.符号 Pycharm提供的一个很强力的功能就是能够根据名称跳转到任何文件.类.符号所在定义位置. ...

  5. leetcode 之Search in Rotated Sorted Array(三)

    描述    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 ...

  6. 一张图总结html5新特性

  7. 当想把html element里面的text提取出来可以试着用正则

    var a='123<span>456</span><span class="active">789</span>'; a.repl ...

  8. 关于wordpress插件WP SMTP的邮箱设置

     花了两天的时间把邮箱设置好了,把大概的步骤写下,放一下查到的资料. 1.去域名服务商那里添加MX记录      如下图的MX      2.测试主机是否禁用了mail()函数      参考链接wo ...

  9. 《构建高性能 Web站点》笔记

    书名:构建高性能Web站点 出版社: 电子工业出版社 ISBN:9787121170935 一  绪论 等待的时间: (1) 数据在网络上的传输时间 (2) 站点服务器处理请求并生成回应数据的时间 ( ...

  10. 【C#】字段总结

    前沿: 字段(field)是一种数据成员,其中容纳了一个值类型的实例或者一个引用类型的引用. 正文: CLR支持类型(静态)字段和实例(非静态)字段.对于类型字段,用于容纳字段数据的动态内存是在类型对 ...