CDOJ 1314 Hash Perfectly FFT
Hash Perfectly
题目连接:
http://acm.uestc.edu.cn/#/problem/show/1314
Description
In computing, a hash table is a data structure used to implement an associative array, a structure that can map keys to values.
A hash table uses a hash function to compute an index into an array of buckets or slots, from which the desired value can be found. A common hash function is \(index=key\ \%\ array\\_size\) (\(\%\) is modulo operator), but it may cause some collisions.
For example, if keys are \(1,2,6,10\), and we choose \(array\\_size=4\), the indexes will be \(1,2,2,2\), where some collisions happen.
To solve the collision, we can use the method known as separate chaining with linked lists.
Seeing the example again, when we try to insert \(6\), because its index \(2\) is used, we build a linked list in index \(2\), and there would be \(2\rightarrow 6\) in index \(2\). Insert \(10\) next, there would be a linked list \(2\rightarrow 6\rightarrow 10\) in index 2.
To calculate the efficiency of the hash function, we define a value called \(ASL\) (Average search length):
\]
\(c_i\) is the number of times to compare when we search the \(i^{th}\) key.
Using the example above again, \(c_1=1,c_2=1,c_3=2,c_4=3\), so \(ASL=\frac{1}{4}(1+1+2+3)=1.75\).
It's obvious that \(ASL\) can minimize when we choose a sufficiently large \(array\\_size\), but in fact due to the limitation of memory, \(array\\_size\) must be no more than \(limit\), i.e., \(1\leq array\\_size\leq limit\).
Now you are given n keys, try to choose a proper \(array\\_size\) to minimize \(ASL\). If there are multiple answers, choose the smallest one.
Input
The first line contains two integers \(n\) and \(limit\).
The second line contains \(n\) integers, where \(i^{th}\) integer indicates the \(i^{th}\) key.
\(1\leq n, limit, key\leq 2*10^5\)
Output
Print the smallest \(array\\_size\) which can minimize \(ASL\).
Sample Input
4 4
1 2 6 10
Sample Output
3
Hint
题意
现在你有n个数,然后哈希是指b[i]=a[i]%k
现在让你找到一个合适的k,使得冲突的对数最少,这个k需满足0<=k<=limit
题解:
若一个位置冲突了k次,则对n*ASL的贡献是k*(k+1)/2,相当于k个数两两冲突的对数加k。
对于两个数a,b,他们只会在(a-b) % array_size == 0时冲突。
利用FFT,可把所有a-b的可能取值对应的个数算出来。对于每个array_size,算出a-b=array_size, a-b=2array_size, a-b=3array_size, …的个数,就可以直接得到ASL的值。
复杂度O(nlogn)
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 600040;
const double pi = acos(-1.0);
int len=1<<19;
struct Complex
{
double r,i;
Complex(double r=0,double i=0):r(r),i(i) {};
Complex operator+(const Complex &rhs)
{
return Complex(r + rhs.r,i + rhs.i);
}
Complex operator-(const Complex &rhs)
{
return Complex(r - rhs.r,i - rhs.i);
}
Complex operator*(const Complex &rhs)
{
return Complex(r*rhs.r - i*rhs.i,i*rhs.r + r*rhs.i);
}
} va[N],vb[N];
void rader(Complex F[],int len) //len = 2^M,reverse F[i] with F[j] j为i二进制反转
{
int j = len >> 1;
for(int i = 1;i < len - 1;++i)
{
if(i < j) swap(F[i],F[j]); // reverse
int k = len>>1;
while(j>=k)
{
j -= k;
k >>= 1;
}
if(j < k) j += k;
}
}
void FFT(Complex F[],int len,int t)
{
rader(F,len);
for(int h=2;h<=len;h<<=1)
{
Complex wn(cos(-t*2*pi/h),sin(-t*2*pi/h));
for(int j=0;j<len;j+=h)
{
Complex E(1,0); //旋转因子
for(int k=j;k<j+h/2;++k)
{
Complex u = F[k];
Complex v = E*F[k+h/2];
F[k] = u+v;
F[k+h/2] = u-v;
E=E*wn;
}
}
}
if(t==-1) //IDFT
for(int i=0;i<len;++i)
F[i].r/=len;
}
void Conv(Complex a[],Complex b[],int len) //求卷积
{
FFT(a,len,1);
FFT(b,len,1);
for(int i=0;i<len;++i) a[i] = a[i]*b[i];
FFT(a,len,-1);
}
int n,limit;
int a[N];
long long num[N],sum[N];
void solve()
{
scanf("%d%d",&n,&limit);
int Mx = 0;
for(int i=0;i<n;i++)
{
int x;scanf("%d",&a[i]);
va[a[i]].r+=1;
vb[200000-a[i]].r+=1;
}
Conv(va,vb,len);
for(int i=0;i<=200000;i++)
num[i]=(long long)(va[200000+i].r+0.5);
long long ans1=1e18,ans2=0;
for(int i=1;i<=limit;i++)
{
long long cnt = 0;
for(int j=i;j<=len;j+=i)
cnt+=num[j];
if(cnt<ans1)
{
ans1=cnt;
ans2=i;
}
}
cout<<ans2<<endl;
}
int main()
{
solve();
return 0;
}
CDOJ 1314 Hash Perfectly FFT的更多相关文章
- LA4671 K-neighbor substrings(FFT + 字符串Hash)
题目 Source http://acm.hust.edu.cn/vjudge/problem/19225 Description The Hamming distance between two s ...
- 卷积FFT、NTT、FWT
先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...
- FFT初步学习小结
FFT其实没什么需要特别了解的,了解下原理,(特别推荐算法导论上面的讲解),模板理解就行了.重在运用吧. 处理过程中要特别注意精度. 先上个练习的地址吧: http://vjudge.net/vjud ...
- UOJ#335. 【清华集训2017】生成树计数 多项式,FFT,下降幂,分治
原文链接www.cnblogs.com/zhouzhendong/p/UOJ335.html 前言 CLY大爷随手切这种题. 日常被CLY吊打系列. 题解 首先从 pruffer 编码的角度考虑这个问 ...
- 【BZOJ】3160: 万径人踪灭 FFT+回文串
[题意]给定只含'a'和'b'字符串S,求不全连续的回文子序列数.n<=10^5. [算法]FFT+回文串 [题解]不全连续的回文子序列数=回文子序列总数-回文子串数. 回文子串数可以用回文串算 ...
- UVALive - 4671 K-neighbor substrings (FFT+哈希)
题意:海明距离的定义:两个相同长度的字符串中不同的字符数.现给出母串A和模式串B,求A中有多少与B海明距离<=k的不同子串 分析:将字符a视作1,b视作0.则A与B中都是a的位置乘积是1.现将B ...
- [poj] 3690 Constellations || 矩阵hash
原题 在大矩阵里找有几个小矩阵出现过,多组数据 将t个矩阵hash值放入multiset,再把大矩阵中每个hash值从multiset里扔出去,这样最后剩在multiset里的值就是没有找到的小矩阵, ...
- FFT题集
FFT学习参考这两篇博客,很详细,结合这看,互补. 博客一 博客二 很大一部分题目需要构造多项式相乘来进行计数问题. 1. HDU 1402 A * B Problem Plus 把A和B分别当作多项 ...
- BZOJ4259:残缺的字符串(FFT与字符串匹配)
很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两 ...
随机推荐
- Codeforces Round #456 (Div. 2)
Codeforces Round #456 (Div. 2) A. Tricky Alchemy 题目描述:要制作三种球:黄.绿.蓝,一个黄球需要两个黄色水晶,一个绿球需要一个黄色水晶和一个蓝色水晶, ...
- git版本控制系统常见操作总结
简介 Git是强大的版本控制系统,主要功能是针对代码.配置文件等文本进行版本控制.备份等,同时个人认为还是分发代码的一个不错的方式. 常见用法 #创建远程git仓库 [root@test88 ~]# ...
- Oracle 序列(sequence)的创建、修改及删除
1.Oracle 创建序列化:create sequence xxxx create sequence student_id minvalue --最小值 nomaxvalue --不设置最大值(由机 ...
- log4net 写日志配置
1. nuget install package log4net 2.站点跟目录新建配置文件 LogWriterConfig.xml <?xml version="1.0" ...
- mac如何运行vue项目
由于本人使用的是mac系统,因此在vue.js 的环境搭建上遇到许许多多的坑.感谢 showonne.yubang 技术指导,最终成功解决.下面是个人的搭建过程,权当是做个笔记吧. 由于mac非常人性 ...
- Typo: In word 拼写检查
Settings->Inspections > Spelling > Typo 评写检查,
- Codeforces Round #278 (Div. 1) D - Conveyor Belts 分块+dp
D - Conveyor Belts 思路:分块dp, 对于修改将对应的块再dp一次. #include<bits/stdc++.h> #define LL long long #defi ...
- 十五oracle 触发器
一.触发器简介 触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行.因此触发器不需要人为的去调用,也不能调用.然后,触发器的触发条件其实在你定义的时候就已经设定好了.这里面需 ...
- thinkphp5.0动态配置
设置配置参数 使用set方法动态设置参数,例如: Config::set('配置参数','配置值'); // 或者使用助手函数 config('配置参数','配置值'); 也可以批量设置,例如: Co ...
- 洛谷P2323 [HNOI2006] 公路修建问题 [二分答案,生成树]
题目传送门 公路修建问题 题目描述 OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多.然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕.所以,OIER Associa ...