标准做法似乎应该是计算生成树数量的基尔霍夫矩阵之类的..

我看到的做法是一个神奇的高精度dp,当然以后这个blahblahblah矩阵还是要搞一下。。

 
 
这个dp的原理就是把环拆成一条含特定点的链和剩下部分(可用dp解决),这样就避免了环具有的一些dp不好解决的奇怪判定.
非常神奇
%想出这个办法的dalao
 
附上非常不走心的非常丑的自己的代码..
 
 #include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
int n;
int f[][][]={};//1 到i的单独一段都和中间连上了 0 到i的单独一段没有和中间连上
int ans[]={};
int z[]={};
int a[]={};
int b[]={};
int w=;
void plu(){//a+b存z
int e=;
for(int i=;i<=;i++){
e=a[i]+b[i]+e;
z[i]=e%;
e/=;
}
}
void mul(){//b*w存z
int e=;
for(int i=;i<=;i++){
e=w*b[i]+e;
z[i]=e%;
e/=;
}
}
int main(){
scanf("%d",&n);
f[][][]=f[][][]=;
f[][][]=;
for(int i=;i<=n;i++){
for(int j=;j<=;j++){
a[j]=f[i-][][j];
b[j]=f[i-][][j];
}
plu();
for(int j=;j<=;j++){
f[i][][j]=z[j];
z[j]=;
} w=;
mul();
for(int j=;j<=;j++){
b[j]=z[j];
z[j]=;
}
plu();
for(int j=;j<=;j++){
f[i][][j]=z[j];
z[j]=;
}
}
for(int i=;i<=n;i++){
w=i*i;
for(int j=;j<=;j++){
b[j]=f[n-i][][j];
a[j]=ans[j];
}
mul();
for(int j=;j<=;j++){
b[j]=z[j];
z[j]=;
}
plu();
for(int j=;j<=;j++){
ans[j]=z[j];
z[j]=;
}
}
int f=;
for(int i=;i>=;i--){
if(ans[i]!=&&f==){
f=;
printf("%d",ans[i]);
continue;
}
if(f){
if(ans[i]>){
cout<<ans[i];
}
else if(ans[i]>){
cout<<<<ans[i];
}
else if(ans[i]>){
cout<<<<<<ans[i];
}
else{
cout<<<<<<<<ans[i];
}
}
}
cout<<endl;
return ;
}

BZOJ1002: [FJOI2007]轮状病毒 (DP)的更多相关文章

  1. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  2. [bzoj1002][FJOI2007]轮状病毒_递推_高精度

    轮状病毒 bzoj-1002 FJOI-2007 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2 ...

  3. bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)

    1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...

  4. 【bzoj1002】 [FJOI2007]轮状病毒DP

    递推+环状特殊处理+高精度   #include<algorithm> #include<iostream> #include<cstdlib> #include& ...

  5. BZOJ1002[FJOI2007]轮状病毒

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  6. [bzoj1002][FJOI2007 轮状病毒] (生成树计数+递推+高精度)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  7. [BZOJ1002] [FJOI2007] 轮状病毒 (数学)

    Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Inpu ...

  8. [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】

    题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...

  9. bzoj1002: [FJOI2007]轮状病毒 生成树计数

    轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...

随机推荐

  1. 【CodeForces】932 E. Team Work

    [题目]E. Team Work [题意]给定n和k,n个人中选择一个大小为x非空子集的代价是x^k,求所有非空子集的代价和%1e9+7.n<=10^9,k<=5000. [算法]斯特林反 ...

  2. 【NOIP】提高组2013 货车运输

    [算法]最大生成树+LCA(倍增) [题解]两点间选择一条路径最小值最大的路径,这条路径一定在最大生成树上,因为最大生成树就是从边权最大的边开始加的. 先求原图的最大生成树(森林),重新构图,然后用一 ...

  3. IE6透明PNG解决方案

    IE6不支持PNG-24图片一直困扰很多人,但是可以通过IE的独有的滤镜来解决,解决的方案很多,比如:将滤镜写在CSS里,还可以写成单独的 Javascript文件,本来认为推荐两种做法:第一种,将所 ...

  4. java.lang.NoClassDefFoundError: HttpServletRequest

    在eclipse里启动tomcat报错,错误日志:Caused by: java.lang.ClassNotFoundException: HttpServletRequest 在build path ...

  5. Coursera在线学习---第五节.Logistic Regression

    一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...

  6. Linux SCIM/fcitx/ibus 输入法

    现在很多发行版linux一般都是装好scim scim-tables-zh 重启就行 但有时重启后还是不能调用 可以用如下方法: 添加文件: sudo gedit /etc/X11/xinit/xin ...

  7. 不相交集ADT--数组实现

    不相交集是解决等价问题的一种有效的数据结构,之所以称之为有效是因为,这个数据结构简单(几行代码,一个简单数组就可以搞定),快速(每个操作基本上可以在常数平均时间内搞定). 首先我们要明白什么叫做等价关 ...

  8. SQLite3使用详解

    sqlite常量的定义(SQLite3返回值的意思): SQLITE_OK           = 0;  返回成功 SQLITE_ERROR        = 1;  SQL错误或错误的数据库 SQ ...

  9. windos8设置cpu数量和内存大小

    转自:http://smilejay.com/2012/03/windows_cpu_memory_setting/ Windows 8(测试版)在作为Xen Guest中的benchmark测试.我 ...

  10. 62.Unique Paths---dp

    题目链接 题目大意:给一个m*n的方格,从左上角走到右下角,中间无任何障碍,问有多少种走法. 法一:DFS,超时,简单模板深搜,无任何剪枝,结果一半的数据超时.代码如下: public int uni ...