link

(似乎很久没写题解了)

题意:

n个物品,每个物品有a,b两个值,给定A,B,现在最多选其中m个,要求最大化选出的物品中【b权值和的B次方-a极差的A次方】。

$n\leq 2\times 10^5,m\leq 50.$

花絮:

大概全场最早ac的两人是miaom&wzf2000,用了非标算的“神奇的做法”,太强辣。

题解:

按照a排序以后转化为选定一个区间以后最大化区间内部的b权值和。

然后考虑两种情况:

  • 如果区间长度小于等于m,那么一定是选择连续一段。
  • 否则,区间内部剩余没有选择的物品,它们的b权值一定比选择的都小,否则可以替换获得更优解。

第一种情况暴力,第二种用链表维护,从小到大删去数,那么每次选择的同样是连续一段。

时间复杂度$\mathcal{O}(nm)$。

code:

 #include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long
#define inf 1000000001
#define y1 y1___
using namespace std;
ll read(){
char ch=getchar();ll x=;int op=;
for (;!isdigit(ch);ch=getchar()) if (ch=='-') op=-;
for (;isdigit(ch);ch=getchar()) x=(x<<)+(x<<)+ch-'';
return x*op;
}
#define N 300005
int n,m,A,B,id[N],l[N],r[N];ll ans,a1[N],a2[N],b1[N],b2[N];
struct node{
int a,b;
node(){}
node(int a_,int b_){a=a_,b=b_;}
}q[N];
bool cmp(node x,node y){return x.a<y.a;}
bool cmp2(int x,int y){return q[x].b<q[y].b||q[x].b==q[y].b&&x<y;}
void upd(ll x,ll y){
if (B==) x=x*x;if (A==) y=y*y;
ans=max(ans,x-y);
}
int main(){
// freopen("A.in","r",stdin);
// freopen("A.out","w",stdout);
n=read(),m=read(),A=read(),B=read();
rep (i,,n) q[i].a=read(),q[i].b=read(),id[i]=i,l[i]=i-,r[i]=i+;
q[]=node(,);q[n+]=node(inf,);
r[]=,l[n+]=n,l[]=,r[n+]=n+;
sort(&q[],&q[n+],cmp);
sort(&id[],&id[n+],cmp2);
rep (i,,n){//区间长度小于等于m
ll sum=;
for (int j=i;j<=n&&j<=i+m-;j++){
sum+=q[j].b;
upd(sum,q[j].a-q[i].a);
}
}
rep (i,,n){//区间长度大于m,从小到大删数
int x=id[i];
b1[]=q[x].b,b2[]=;a1[]=a2[]=q[x].a;
for (int j=,l_=l[x],r_=r[x];j<=m;j++){
b1[j]=b1[j-]+q[l_].b,b2[j]=b2[j-]+q[r_].b;
a1[j]=q[l_].a,a2[j]=q[r_].a;
l_=l[l_],r_=r[r_];
}
rep (j,,m-) upd(b1[j]+b2[m-j-],a2[m-j-]-a1[j]);
r[l[x]]=r[x],l[r[x]]=l[x];
}
cout<<ans<<'\n';
return ;
}

uoj386 【UNR #3】鸽子固定器的更多相关文章

  1. UOJ.386.[UNR #3]鸽子固定器(贪心 链表)

    题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品 ...

  2. #386. 【UNR #3】鸽子固定器

    #386. [UNR #3]鸽子固定器 题目链接 官方题解 分析: 神奇的做法+链表. 首先按照大小排序. 对于小于选择小于m个物品的时候,这个m个物品一定是一段连续的区间.因为,如果中间空着一个物品 ...

  3. 【UOJ#386】【UNR#3】鸽子固定器(贪心)

    [UOJ#386][UNR#3]鸽子固定器(贪心) 题面 UOJ 题解 一个不难想到的暴力做法是把东西按照\(s\)排序,这样子我们枚举极大值和极小值,那么我们选择的一定是这一段之间\(v\)最大的那 ...

  4. UOJ#386. 【UNR #3】鸽子固定器(链表)

    题意 题目链接 为了固定S**p*鸽鸽,whx和zzt来到鸽具商店选购鸽子固定器. 鸽具商店有 nn 个不同大小的固定器,现在可以选择至多 mm 个来固定S**p*鸽鸽.每个固定器有大小 sisi 和 ...

  5. 【UOJ386】【UNR #3】鸽子固定器 链表

    题目描述 有 \(n\) 个物品,每个物品有两个属性:权值 \(v\) 和大小 \(s\). 你要选出 \(m\) 个物品,使得你选出的物品的权值的和的 \(d_v\) 次方减掉大小的极差的 \(d_ ...

  6. uoj#386. 【UNR #3】鸽子固定器(乱搞)

    传送门 题解 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define fp(i ...

  7. [UOJ386]鸽子固定器

    题解 堆+贪心 题意就是给你\(n\)个物品,让你最多选\(m\)个 每个物品有两个属性\(a_i,b_i\) 最大化\((\sum_{a_i})^{dv}+(max(b_i)-min(b_i))^{ ...

  8. UNR#3 Day1——[ 堆+ST表+复杂度分析 ][ 结论 ][ 线段树合并 ]

    地址:http://uoj.ac/contest/45 第一题是鸽子固定器. 只会10分.按 s 从小到大排序,然后 dp[ i ][ j ][ k ] 表示前 i 个元素.已经选了 j 个.最小值所 ...

  9. 经典灰鸽子lcx

    方法1路由配置 在路由器配置 进入虚拟服务器 填入ip 端口 就可以了方法2内网域名解析想以前的花生客 科迈都有这项免费业务但现在基本不提供了如果那个网站还有内网解析的功能 大家一定要发上来哦方法3p ...

随机推荐

  1. 下拉刷新和UITableView的section headerView冲突的原因分析与解决方案

    UITableView:下拉刷新和上拉加载更多 [转载请注明出处] 本文将说明具有多个section的UITableView在使用下拉刷新机制时会遇到的问题及其解决方案. 工程地址在帖子最下方,只需要 ...

  2. CentOS7 升级gcc版本

    CentOS7自带的GCC版本是4.8.5,如下所示: # cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) # which g ...

  3. 从python入门ruby

    1.Ruby的函数可以不使用括号 def h(name) puts "hello #{name}" end h "jack" 2.python可以直接访问实例的 ...

  4. python设计模式之迭代器与生成器详解(五)

    前言 迭代器是设计模式中的一种行为模式,它提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示.python提倡使用生成器,生成器也是迭代器的一种. 系列文章 python设计模 ...

  5. [002] delete_duplication_of_linked_list

    [Description] Given a unsort linked list, delete all the duplication from them, no temporary space p ...

  6. Python 生成随机数

    import random x = int(input('Enter a number for x: '))  --随机数最小值y = int(input('Enter a number for y: ...

  7. Class.this 和 this 的有什么不同

    转载:http://www.cnblogs.com/liwei45212/archive/2013/04/17/3026364.html 在阅读Java代码的時候 我们时会看到Class.this的使 ...

  8. [转载]Windows服务编写原理及探讨(2)

    (二)对服务的深入讨论之上 上一章其实只是概括性的介绍,下面开始才是真正的细节所在.在进入点函数里面要完成ServiceMain的初始化,准确点说是初始化一个 SERVICE_TABLE_ENTRY结 ...

  9. 模板为webpack的目录结构

    目录结构 | -- build // 项目构建(webpack)相关代码 | |-- build.js // 生产环境构建代码 | |-- check-version.js // 检查node.npm ...

  10. npm install 装本地一直安装全局问题

    想用npm安装一些模块,不管怎么装,一直装作全局. 以为是node有问题,重装了N次,却还发现这个问题. 困惑几天无果, 偶然间通过此文章发现,npm存在配置文件:https://www.sitepo ...