转载:逻辑回归的python实现
转载自:http://blog.csdn.net/zouxy09/article/details/20319673
一、逻辑回归(LogisticRegression)
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。
还有类似的某用户购买某商品的可能性,某病人患有某种疾病的可能性啊等等。这个世界是随机的(当然了,人为的确定性系统除外,但也有可能有噪声或产生错 误的结果,只是这个错误发生的可能性太小了,小到千万年不遇,小到忽略不计而已),所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指 的是某事物发生的可能性与不发生的可能性的比值。
Logistic regression可以用来回归,也可以用来分类,主要是二分类。还记得上几节讲的支持向量机SVM吗?它就是个二分类的例如,它可以将两个不同类别的 样本给分开,思想是找到最能区分它们的那个分类超平面。但当你给一个新的样本给它,它能够给你的只有一个答案,你这个样本是正类还是负类。例如你问 SVM,某个女生是否喜欢你,它只会回答你喜欢或者不喜欢。这对我们来说,显得太粗鲁了,要不希望,要不绝望,这都不利于身心健康。那如果它可以告诉我, 她很喜欢、有一点喜欢、不怎么喜欢或者一点都不喜欢,你想都不用想了等等,告诉你她有49%的几率喜欢你,总比直接说她不喜欢你,来得温柔。而且还提供了 额外的信息,她来到你的身边你有多少希望,你得再努力多少倍,知己知彼百战百胜,哈哈。Logistic regression就是这么温柔的,它给我们提供的就是你的这个样本属于正类的可能性是多少。
还得来点数学。(更多的理解,请参阅参考文献)假设我们的样本是{x, y},y是0或者1,表示正类或者负类,x是我们的m维的样本特征向量。那么这个样本x属于正类,也就是y=1的“概率”可以通过下面的逻辑函数来表示:
这里θ是模型参数,也就是回归系数,σ是sigmoid函数。实际上这个函数是由下面的对数几率(也就是x属于正类的可能性和负类的可能性的比值的对数)变换得到的:
换句话说,y也就是我们关系的变量,例如她喜不喜欢你,与多个自变量(因素)有关,例如你人品怎样、车子是两个轮的还是四个轮的、长得胜过潘安还是和犀利哥有得一拼、有千尺豪宅还是三寸茅庐等等,我们把这些因素表示为x1, x2,…, xm。 那这个女的怎样考量这些因素呢?最快的方式就是把这些因素的得分都加起来,最后得到的和越大,就表示越喜欢。但每个人心里其实都有一杆称,每个人考虑的因 素不同,萝卜青菜,各有所爱嘛。例如这个女生更看中你的人品,人品的权值是0.6,不看重你有没有钱,没钱了一起努力奋斗,那么有没有钱的权值是 0.001等等。我们将这些对应x1, x2,…, xm的权值叫做回归系数,表达为θ1, θ2,…, θm。他们的加权和就是你的总得分了。请选择你的心仪男生,非诚勿扰!哈哈。
所以说上面的logistic回归就是一个线性分类模型,它与线性回归的不同点在于:为了将线性回归输出的很大范围的数,例如从负无穷到正无穷,压缩到 0和1之间,这样的输出值表达为“可能性”才能说服广大民众。当然了,把大值压缩到这个范围还有个很好的好处,就是可以消除特别冒尖的变量的影响(不知道 理解的是否正确)。而实现这个伟大的功能其实就只需要平凡一举,也就是在输出加一个logistic函数。另外,对于二分类来说,可以简单的认为:如果样 本x属于正类的概率大于0.5,那么就判定它是正类,否则就是负类。实际上,SVM的类概率就是样本到边界的距离,这个活实际上就让logistic regression给干了。
所以说,LogisticRegression 就是一个被logistic方程归一化后的线性回归,仅此而已。
好了,关于LR的八卦就聊到这。归入到正统的机器学习框架下,模型选好了,只是模型的参数θ还是未知的,我们需要用我们收集到的数据来训练求解得到它。那我们下一步要做的事情就是建立代价函数了。
LogisticRegression最基本的学习算法是最大似然。啥叫最大似然,可以看看我的另一篇博文“从最大似然到EM算法浅解”。
假设我们有n个独立的训练样本{(x1, y1) ,(x2, y2),…, (xn, yn)},y={0, 1}。那每一个观察到的样本(xi, yi)出现的概率是:
上
面为什么是这样呢?当y=1的时候,后面那一项是不是没有了,那就只剩下x属于1类的概率,当y=0的时候,第一项是不是没有了,那就只剩下后面那个x属
于0的概率(1减去x属于1的概率)。所以不管y是0还是1,上面得到的数,都是(x,
y)出现的概率。那我们的整个样本集,也就是n个独立的样本出现的似然函数为(因为每个样本都是独立的,所以n个样本出现的概率就是他们各自出现的概率相
乘):
那最大似然法就是求模型中使得似然函数最大的系数取值θ*。这个最大似然就是我们的代价函数(cost function)了。
OK,那代价函数有了,我们下一步要做的就是优化求解了。我们先尝试对上面的代价函数求导,看导数为0的时候可不可以解出来,也就是有没有解析解,有这个解的时候,就皆大欢喜了,一步到位。如果没有就需要通过迭代了,耗时耗力。
我们先变换下L(θ):取自然对数,然后化简(不要看到一堆公式就害怕哦,很简单的哦,只需要耐心一点点,自己动手推推就知道了。注:有xi的时候,表示它是第i个样本,下面没有做区分了,相信你的眼睛是雪亮的),得到:
这时候,用L(θ)对θ求导,得到:
然后我们令该导数为0,你会很失望的发现,它无法解析求解。不信你就去尝试一下。所以没办法了,只能借助高大上的迭代来搞定了。这里选用了经典的梯度下降算法。
二、优化求解
2.1、梯度下降(gradient descent)
Gradient descent 又叫 steepest descent,是利用一阶的梯度信息找到函数局部最优解的一种方法,也是机器学习里面最简单最常用的一种优化方法。它的思想很简单,和我开篇说的那样, 要找最小值,我只需要每一步都往下走(也就是每一步都可以让代价函数小一点),然后不断的走,那肯定能走到最小值的地方,例如下图所示:
但,我同时也需要更快的到达最小值啊,怎么办呢?我们需要每一步都找下坡最快的地方,也就是每一步我走某个方向,都比走其他方法,要离最小值更近。而这个下坡最快的方向,就是梯度的负方向了。
对logistic Regression来说,梯度下降算法新鲜出炉,如下:
其中,参数α叫学习率,就是每一步走多远,这个参数蛮关键的。如果设置的太多,那么很容易就在最优值附加徘徊,因为你步伐太大了。例如要从广州到上海,但 是你的一步的距离就是广州到北京那么远,没有半步的说法,自己能迈那么大步,是幸运呢?还是不幸呢?事物总有两面性嘛,它带来的好处是能很快的从远离最优 值的地方回到最优值附近,只是在最优值附近的时候,它有心无力了。但如果设置的太小,那收敛速度就太慢了,向蜗牛一样,虽然会落在最优的点,但是这速度如 果是猴年马月,我们也没这耐心啊。所以有的改进就是在这个学习率这个地方下刀子的。我开始迭代是,学习率大,慢慢的接近最优值的时候,我的学习率变小就可 以了。所谓采两者之精华啊!这个优化具体见2.3 。
梯度下降算法的伪代码如下:
################################################
初始化回归系数为1
重复下面步骤直到收敛{
计算整个数据集的梯度
使用alpha x gradient来更新回归系数
}
返回回归系数值
################################################
注:因为本文中是求解的Logit回归的代价函数是似然函数,需要最大化似然函数。所以我们要用的是梯度上升算法。但因为其和梯度下降的原理是一样的,只 是一个是找最大值,一个是找最小值。找最大值的方向就是梯度的方向,最小值的方向就是梯度的负方向。不影响我们的说明,所以当时自己就忘了改过来了,谢谢 评论下面@wxltt的指出。另外,最大似然可以通过取负对数,转化为求最小值。代码里面的注释也是有误的,写的代码是梯度上升,注销成了梯度下降,对大 家造成的不便,希望大家海涵。
2.2、随机梯度下降SGD (stochastic gradient descent)
梯度下降算法在每次更新回归系数的时候都需要遍历整个数据集(计算整个数据集的回归误差),该方法对小数据集尚可。但当遇到有数十亿样本和成千上万的特征 时,就有点力不从心了,它的计算复杂度太高。改进的方法是一次仅用一个样本点(的回归误差)来更新回归系数。这个方法叫随机梯度下降算法。由于可以在新的 样本到来的时候对分类器进行增量的更新(假设我们已经在数据库A上训练好一个分类器h了,那新来一个样本x。对非增量学习算法来说,我们需要把x和数据库 A混在一起,组成新的数据库B,再重新训练新的分类器。但对增量学习算法,我们只需要用新样本x来更新已有分类器h的参数即可),所以它属于在线学习算 法。与在线学习相对应,一次处理整个数据集的叫“批处理”。
随机梯度下降算法的伪代码如下:
################################################
初始化回归系数为1
重复下面步骤直到收敛{
对数据集中每个样本
计算该样本的梯度
使用alpha xgradient来更新回归系数
}
返回回归系数值
################################################
2.3、改进的随机梯度下降
评价一个优化算法的优劣主要是看它是否收敛,也就是说参数是否达到稳定值,是否还会不断的变化?收敛速度是否快?
上图展示了随机梯度下降算法在200次迭代中(请先看第三和第四节再回来看这里。我们的数据库有100个二维样本,每个样本都对系数调整一次,所以共有
200*100=20000次调整)三个回归系数的变化过程。其中系数X2经过50次迭代就达到了稳定值。但系数X1和X0到100次迭代后稳定。而且可
恨的是系数X1和X2还在很调皮的周期波动,迭代次数很大了,心还停不下来。产生这个现象的原因是存在一些无法正确分类的样本点,也就是我们的数据集并非
线性可分,但我们的logistic
regression是线性分类模型,对非线性可分情况无能为力。然而我们的优化程序并没能意识到这些不正常的样本点,还一视同仁的对待,调整系数去减少
对这些样本的分类误差,从而导致了在每次迭代时引发系数的剧烈改变。对我们来说,我们期待算法能避免来回波动,从而快速稳定和收敛到某个值。
对随机梯度下降算法,我们做两处改进来避免上述的波动问题:
1)
在每次迭代时,调整更新步长alpha的值。随着迭代的进行,alpha越来越小,这会缓解系数的高频波动(也就是每次迭代系数改变得太大,跳的跨度太
大)。当然了,为了避免alpha随着迭代不断减小到接近于0(这时候,系数几乎没有调整,那么迭代也没有意义了),我们约束alpha一定大于一个稍微
大点的常数项,具体见代码。
2)每次迭代,改变样本的优化顺序。也就是随机选择样本来更新回归系数。这样做可以减少周期性的波动,因为样本顺序的改变,使得每次迭代不再形成周期性。
改进的随机梯度下降算法的伪代码如下:
################################################
初始化回归系数为1
重复下面步骤直到收敛{
对随机遍历的数据集中的每个样本
随着迭代的逐渐进行,减小alpha的值
计算该样本的梯度
使用alpha x gradient来更新回归系数
}
返回回归系数值
################################################
比较原始的随机梯度下降和改进后的梯度下降,可以看到两点不同:
1)系数不再出现周期性波动。2)系数可以很快的稳定下来,也就是快速收敛。这里只迭代了20次就收敛了。而上面的随机梯度下降需要迭代200次才能稳定。
三、Python实现
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 29 15:16:40 2014 @author: Administrator
""" from numpy import *
import matplotlib.pyplot as plt
import time def sigmoid(inX):
return 1.0 / (1 + exp(-inX)) def trainLogRegres(train_x, train_y, opts):
starttime = time.time() numSamples, numFeatures = shape(train_x)
print numSamples,numFeatures
alpha = opts['alpha']; maxIter = opts['maxIter']
theta = ones((numFeatures, 1))
#随机梯度下降
for k in range(maxIter):
for i in range(numSamples):
output = sigmoid(train_x[i, :] * theta)
error = train_y[i, 0] - output
theta = theta + alpha * train_x[i, :].transpose() * error endtime=time.time()
print 'Training complete! Took %fs!' % (endtime - starttime)
print theta
return theta def testLogRegres(weights, test_x, test_y):
numSamples, numFeatures = shape(test_x)
matchCount = 0
for i in xrange(numSamples):
predict = sigmoid(test_x[i, :] * weights)
if predict >= 0.5 :
predict = 1
else:
predict = 0
if predict == (test_y[i, 0]):
matchCount += 1
accuracy = float(matchCount) / numSamples
return accuracy def showLogRegres(weights, train_x, train_y): numSamples, numFeatures = shape(train_x)
#所有样本
for i in xrange(numSamples):
if int(train_y[i, 0]) == 0:
plt.plot(train_x[i, 1], train_x[i, 2], 'or')
elif int(train_y[i, 0]) == 1:
plt.plot(train_x[i, 1], train_x[i, 2], 'ob')
#分类线
min_x = min(train_x[:, 1])[0, 0]
max_x = max(train_x[:, 1])[0, 0]
weights = weights.getA()
y_min_x = float(-weights[0] - weights[1] * min_x) / weights[2]
y_max_x = float(-weights[0] - weights[1] * max_x) / weights[2]
plt.plot([min_x, max_x], [y_min_x, y_max_x], '-g')
plt.xlabel('X1'); plt.ylabel('X2')
plt.show() def loadData():
train_x = []
train_y = []
fileIn = open('testSet.txt')
for line in fileIn.readlines():
lineArr = line.strip().split()
train_x.append([1.0, float(lineArr[0]), float(lineArr[1])])
train_y.append(float(lineArr[2]))
return mat(train_x), mat(train_y).transpose() print "step 1: load data..."
train_x, train_y = loadData()
test_x = train_x; test_y = train_y print "step 2: training..."
opts = {'alpha': 0.01, 'maxIter': 200}
optimalWeights = trainLogRegres(train_x, train_y, opts) print "step 3: testing..."
accuracy = testLogRegres(optimalWeights, test_x, test_y) print "step 4: show the result..."
print 'The classify accuracy is: %.3f%%' % (accuracy * 100)
showLogRegres(optimalWeights, train_x, train_y)
转载:逻辑回归的python实现的更多相关文章
- numpy+sklearn 手动实现逻辑回归【Python】
逻辑回归损失函数: from sklearn.datasets import load_iris,make_classification from sklearn.model_selection im ...
- 用Python开始机器学习(7:逻辑回归分类) --好!!
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到 ...
- Python实现LR(逻辑回归)
Python实现LR(逻辑回归) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end o ...
- Python实践之(七)逻辑回归(Logistic Regression)
机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Pyth ...
- python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb ...
- python逻辑回归 自动建模
#-*- coding: utf-8 -*- #逻辑回归 自动建模 import numpy as np import pandas as pd from sklearn.linear_model i ...
- 逻辑回归原理(python代码实现)
Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点: ...
- 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...
- 逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
随机推荐
- ajax的轮询和长轮询
概念: 轮询(polling):客户端按规定时间定时像服务端发送ajax请求,服务器接到请求后马上返回响应信息并关闭连接. 概念总是枯燥的,只有代码方能解心头之快 前段代码:index.html: & ...
- java 实现对指定目录的文件进行下载
@RequestMapping("/exportDocument") @ResponseBody public void exportDocument(HttpServletReq ...
- poj_1464 动态规划
题目大意 N个节点构成一棵树形结构,在其中若干个节点上放置士兵,与被放置士兵的节点相连的边会被士兵看守.问需要至少在多少个节点上放置士兵,才能使得N-1条边都被看守. 题目分析 题目描述的结构为树形, ...
- 全链路追踪spring-cloud-sleuth-zipkin
微服务架构下 多个服务之间相互调用,在解决问题的时候,请求链路的追踪是十分有必要的,鉴于项目中采用的spring cloud架构,所以为了方便使用,便于接入等 项目中采用了spring cloud s ...
- Sass之一(基础篇)
源码链接:http://pan.baidu.com/s/1o8M51hCSass 学习Sass之前,应该要知道css预处理器这个东西,css预处理器是什么呢? Css预处理器定义了一种新的语言将Css ...
- NGINX优化参数
(1)nginx运行工作进程个数,一般设置cpu的核心或者核心数x2 如果不了解cpu的核数,可以top命令之后按1看出来,也可以查看/proc/cpuinfo文件 grep ^processor / ...
- Spoken English Practice(1、This is between you and me, Don't let it out. 2、Don't let your dreams be dreams, no matter how hard it gets, say to yourself, I'm going to make it.)
绿色:连读: 红色:略读: 蓝色:浊化: 橙色:弱读 下划线_为浊化 口语蜕变(2017/7/12) ...
- 粘性会话 session affinity sticky session requests from the same client to be passed to the same server in a group of servers
Module ngx_http_upstream_module http://nginx.org/en/docs/http/ngx_http_upstream_module.html#sticky S ...
- linux查看硬件信息的方法
目前会Linux的人不少,但是精通的不多,怎样才能做一个符合企业需求的Linux人才,首先要有良好的Linux基础知识.本文为你讲解Linux的知识,今天所讲的是 Linux硬件信息怎样查看,希望你能 ...
- php composer,update-ca-trust
安装 ComposerComposer 需要 PHP 5.3.2+ 才能运行. $ curl -sS https://getcomposer.org/installer | php这个命令会将 com ...