sicily 1259. Sum of Consecutive Primes
Description
Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. Your mission is to write a program that reports the number of representations for the given positive integer. Input
The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.
Output
The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.
Sample Input
aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAARABIDASIAAhEBAxEB/8QAGAABAAMBAAAAAAAAAAAAAAAAAAMFBwT/xAAlEAACAQQCAQMFAAAAAAAAAAABAgMABAURBiESIjFBMjZxdbP/xAAYAQACAwAAAAAAAAAAAAAAAAAAAwEEBf/EABsRAQEAAgMBAAAAAAAAAAAAAAEAAgMEEyFh/9oADAMBAAIRAxEAPwDQeRW+SyVnctBIkiiScOk87qm0ciP0aZWA8dkEDZA2fcGPCWPI+PXkUt3GIcQjkyQxTGdtMrAhUVQO5CraVd/UB1pa7cnHmbaW5hjxEktoZJJGulnjChWYsT4lvLoHvr3B1vommvuQYaSe/jGSxrW9yXEiCWIiTe9eWohvs/LH8n5ocDh9jlnsER+zt+9wDE9G0uKWO4hSaGRJIpFDI6MCrKewQR7ilVfFPs7B/r4P5rStB8ZJW9KUqIlKUoi//9k=" alt="" /> Copy sample input to clipboard
2 Sample Output
1 |
分析:首先根据题目要求是给定一个数,找到能够满足如下条件的序列个数:
序列所有元素是连续的素数
序列元素之和为给定数
首先我们已知数值范围是 ~,那么先找到 ~10000里面的所有素数,而不应该在每输入一个数都重新找一次。
还有一个是素数是要连续的,这样在寻找的时候就减少了很多搜索。对于每一个数都只需要判断它的下一个。 算法思想如下:
从小于给定数的最大素数出发,利用深搜,剪枝依据是每个元素的子节点只能是其素数列表的前一个元素,比如给定 ,那么第一个素数为7
>
==
终止
终止
在深搜的时候,判断当前素数之和是不是小于给定数,如果不是,就不需要继续考虑其子节点了。
#include <iostream>
#include <stack>
#include <cstring>
#include <map> using namespace std; void getPrimerList(map<int, int> &primerList, int num) { // 找到给定范围的所有素数
int *array = new int[num];
memset(array, , sizeof(array) * num);
int k = ;
for (int i = ; i < num; ++i) {
if (array[i] == ) {
primerList[k++] = i;
for (int j = * i; j < num; j += i) {
array[j] = ;
}
}
}
} struct Node {
Node(int v = , int s = ): value(v), sum(s) { }
int value;
int sum;
}; int main(int argc, char const *argv[])
{
map<int, int> primerList;
getPrimerList(primerList, );
int number;
while (cin >> number && number != ) {
int factorListNum = ;
if (number >= ) {
int numT;
map<int, int>::iterator iter = primerList.end();
--iter;
for (; iter != primerList.begin(); --iter) {
if (iter->second <= number) {
numT = iter->second;
break;
}
}
if (iter == primerList.begin())
numT = iter->second;
stack<Node> s;
// 从小于等于给定数的第一个素数开始,以每个素数为起点向前查找
// 也就是说,这里相当于深搜多棵树
for (; iter != primerList.begin(); --iter) {
s.push(Node(iter->first, iter->second));
}
s.push(Node(iter->first, iter->second));
while (!s.empty()) {
Node curent = s.top();
s.pop();
if (curent.sum == number) {
factorListNum++;
} else if (curent.sum < number){
if ((curent.value - ) >= ) {
s.push(Node(curent.value - , primerList[curent.value - ] + curent.sum));
}
} // else 其他情况下就不再需要继续往下子节点遍历
}
}
cout << factorListNum << endl;
}
return ;
}
sicily 1259. Sum of Consecutive Primes的更多相关文章
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- POJ 2739 Sum of Consecutive Prime Numbers(尺取法)
题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Description S ...
- ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法
POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS Memory Limit:65536KB 64bit IO Fo ...
- POJ2739 Sum of Consecutive Prime Numbers(尺取法)
POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...
- POJ2739 Sum of Consecutive Prime Numbers 2017-05-31 09:33 47人阅读 评论(0) 收藏
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 25225 ...
- Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers http://poj.org/problem?id=2739 Time Limit: 1000MS Memory Limit: 6 ...
- poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19697 ...
- POJ.2739 Sum of Consecutive Prime Numbers(水)
POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...
- poj 2379 Sum of Consecutive Prime Numbers
...
随机推荐
- python写BMI指数菜单
需求: # 1.创建并输出菜单, 菜单是不可变的. 所以使用元组menus = ("1, 录入", "2, 查询", "3, 删除", &q ...
- Oracle 高性能SQL引擎剖析----执行计划
执行计划是指示Oracle如何获取和过滤数据.产生最终结果集,是影响SQL语句执行性能的关键因素.我们在深入了解执行计划之前,首先需要知道执行计划是在什么时候产生的,以及如何让SQL引擎为语句生成执行 ...
- 【Cogs2187】帕秋莉的超级多项式(多项式运算)
[Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio& ...
- HDU.1846 Brave Game (博弈论 巴什博弈)
HDU.1846 Brave Game (博弈论 巴什博弈) 题意分析 巴什博奕裸题 博弈论快速入门 代码总览 include <bits/stdc++.h> using namespac ...
- bzoj3036: 绿豆蛙的归宿(期望DP)
刷水反被水题日,拓扑写炸WA了2发T T... 因为是DAG图,可以直接递推,不需要高斯消元 #include<iostream> #include<cstring> #inc ...
- 【noip2018】【luogu5024】保卫王国
题目描述 Z 国有nn座城市,n - 1n−1条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需要满足如下几个条 ...
- Linux之Libcurl库的介绍与应用20170509
一.LibCurl简介 LibCurl是免费的客户端URL传输库,支持FTP,FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, FILE ,LDAP等 ...
- UESTC--1300
原题链接:http://acm.uestc.edu.cn/problem.php?pid=1300 分析:dp,最长公共上升子列.对于两个序列num1[maxn],num2[maxn]: 如果num1 ...
- 省选模拟赛 LYK loves rabbits(rabbits)
题目描述 LYK喜欢兔子,它在家中养了3只兔子. 有一天,兔子不堪寂寞玩起了游戏,3只兔子排成一排,分别站在a,b,c这3个位置. 游戏的规则是这样的,重复以下步骤k次:选择两个不同的兔子A和B,假如 ...
- 手脱FSG v1.33
1.载入PEID FSG v1.33 (Eng) -> dulek/xt 2.载入OD,先F8跟一会 004103E3 > BE A4014000 mov esi,fsg1_33.0040 ...