AtCoder AGC036C GP 2 (组合计数)
题目链接
https://atcoder.jp/contests/agc036/tasks/agc036_c
题解
终于有时间补agc036的题了。
这题其实不难的来着……我太菜了考场上没想出来
首先转化一下题目: 一个序列可以被按题目的操作方式生成当且仅当它长度为\(N\), 总和为\(3M\), 且最大数不超过\(2M\), 奇数的个数不超过\(M\).
必要性显然,充分性归纳易证。
然后考虑怎么计数: 先不考虑第二个条件,定义\(f(n,m,k)\)表示长度为\(n\)总和为\(m\)奇数不超过\(k\)个的方案数,那么枚举奇数的个数\(i\), 剩下的偶数和为\(m-1\), 有\(f(n,m,k)=\sum^{k}_{i\equiv m(\mod 2)}{n\choose i}{\frac{m-i}{2}+n-1\choose n-1}\).
考虑第二个条件,补集转化,最大数大于\(2M\)意味着剩下的所有数和小于\(M\), 那么不要把和式写出来然后无脑推式子!固定下最大的数的位置\(1\),给第一个数减去\(2M\) (这是个偶数所以不影响奇数那个条件),就是要求\(N\)个数和为\(M\), 第一个数大于\(0\),一共有不超过\(M\)个奇数的方案数。这个因为有奇数个数的限制所以枚举很麻烦,那就再补集转化!转化为\((N-1)\)个数和为\(M\)且奇数不超过\(M\)个。
因此最后答案就是\(f(N,3M,M)-N(f(N,M,M)-f(N-1,M,M))\).
时间复杂度\(O(N+M)\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 2e6;
const int P = 998244353;
llong fact[N+3],finv[N+3];
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong comb(llong x,llong y) {return x<0||y<0||x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;}
llong calc(llong n,llong m,llong k)
{
llong ret = 0ll;
for(int i=0; i<=k; i++)
{
if((m-i)&1) continue;
llong tmp = comb(n,i)*comb(((m-i)>>1)+n-1,n-1)%P;
ret = (ret+tmp)%P;
}
// printf("calc %lld %lld %lld=%lld\n",n,m,k,ret);
return ret;
}
int n,m;
int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d%d",&n,&m);
llong ans = calc(n,3*m,m);
ans = (ans-n*(calc(n,m,m)-calc(n-1,m,m)+P)%P+P)%P;
printf("%lld\n",ans);
return 0;
}
AtCoder AGC036C GP 2 (组合计数)的更多相关文章
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...
随机推荐
- rabbitmq五种消息模型整理
目录 0. 配置项目 1. 基本消息模型 1.1 生产者发送消息 1.2 消费者获取消息(自动ACK) 1.3 消息确认机制(ACK) 1.4 消费者获取消息(手动ACK) 1.5 自动ACK存在的问 ...
- python基础_面向对象
面向对象定义 把一组数据结构和处理它们的方法组成对象(object),把相同行为的对象归纳为类(class),通过类的封装(encapsulation)隐藏内部细节,通过继承(inheritance) ...
- linux 安装 python 最全教程
环境:centos6.5 centos6.5 自带的 python 版本是 2.6.6,需要重新安装 2.7: centos7 自带的 python 版本是 2.7.5 基本操作 在安装新版本之前,一 ...
- 9.用ExecuteSqlCommand执行存储过程
比如你有一个存储过程 IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[CreateAutho ...
- C++ 类类型转换函数explicit 关键字
标准数据之间会进行 隐式类型安全转换. 转换规则: 隐式类型转换的问题: #include <iostream> #include <string> using namesp ...
- 常用的TCP/UDP端口
已知的TCP/UDP端口可以在wikipedia上找到: List of TCP and UDP port numbers, 太多了,按组列举了最常用的,如下: FTP:21SSH:22Telnet: ...
- python进阶资源
本文为不同阶段的Python学习者从不同角度量身定制了49个学习资源. 初学者 Welcome to Python.org https://www.python.org/ 官方Python站点提供了一 ...
- ccs之经典布局(二)(两栏,三栏布局)
接上篇ccs之经典布局(一)(水平垂直居中) 四.两列布局 单列宽度固定,另一列宽度是自适应. 1.float+overflow:auto; 固定端用float进行浮动,自适应的用overflow:a ...
- deep_learning_Function_tf.control_dependencies([])
tf.control_dependencies([])函数含义及使用 2019.02.23 14:01:14字数 60阅读 420 tf.control_dependencies([controls_ ...
- 解决 android studio 出现:"AndroidStudio:Could not GET 'https://dl.google.com Received status code 400 from server: Bad Request"问题
一.android studio 编译项目时出现"AndroidStudio:Could not GET 'https://dl.google.com Received status cod ...