题目链接

题意 : 给出 n 个串、然后给出一个问询串、问你对于问询串的每一个前缀、需要至少补充多少单词才能使得其后缀包含 n 个串中的其中一个、注意 '-' 字符代表退格

分析 :

多串的匹配问询自然想到 AC 自动机 或者 构建 Trie 图

首先将 N 个串丢到 Trie 图里面

对于每一个节点记录其要变成一个完整的串最少需要补充的单词数

然后在问询的时候、由于有退格操作

于是需要将跑过的节点路径记录下来以便恢复

这个我们可以使用栈来做到

然后对于问询串的每一个前缀问询

可以采用 DP 的方式来一直记录跳 Fail 时候每个节点的最优值是什么

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scl(i) scanf("%lld", &i)
#define scll(i, j) scanf("%lld %lld", &i, &j)
#define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k)
#define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l)

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;

;
;
;

struct Aho{
    struct StateTable{
        int nxt[Letter];
        int fail, cnt, dis;
        bool vis;
        void init(){
            memset(nxt, , sizeof(nxt));
            fail = ;
            cnt = ;
            dis = 0x3f3f3f3f;
            vis = false;
        }
    }Node[max_node];

    int sz;
    queue<int> que;

    inline ].init(); sz = ; }

    inline void insert(char *s, int len){
        ;
        Node[now].dis = min(Node[now].dis, len);
        ; i<len; i++){
            int idx = s[i] - 'a';
            if(!Node[now].nxt[idx]){
                Node[sz].init();
                Node[now].nxt[idx] = sz++;
            }
            now = Node[now].nxt[idx];
            Node[now].dis = min(Node[now].dis, len-i-);
        }
        Node[now].cnt++;
    }

    inline void build(){
        Node[].fail = -;
        que.push();
        while(!que.empty()){
            int top = que.front();  que.pop();
            ; i<Letter; i++){
                if(Node[top].nxt[i]){
                    ) Node[ Node[top].nxt[i] ].fail = ;
                    else{
                        int v = Node[top].fail;
                        ){
                            if(Node[v].nxt[i]){
                                Node[ Node[top].nxt[i] ].fail = Node[v].nxt[i];
                                break;
                            }v = Node[v].fail;
                        }) Node[ Node[top].nxt[i] ].fail = ;
                    }que.push(Node[top].nxt[i]);
                }?Node[ Node[top].fail ].nxt[i]:;
            }
        }
    }

//    int Match(char *s){
//        int now = 0, res = 0;
//        for(int i=0; s[i]!='\0'; i++){
//            int idx = s[i] - 'a';
//            now = Node[now].nxt[idx];
//            int tmp = now;
//            while(tmp != 0){
//                res += Node[tmp].cnt;
//                Node[tmp].cnt = 0;
//                tmp = Node[tmp].fail;
//            }
//        }
//        return res;
//    }

    int dp[max_node];
    int GetDP(int cur){
        ) return Node[cur].dis;
        ) return dp[cur];
        dp[cur] = min(Node[cur].dis, GetDP(Node[cur].fail));
        return dp[cur];
    }
    void query(char *s, int len){
        ;
        memset(dp, -, sizeof(dp));
        stack<int> pos;
        printf("%d\n", Node[now].dis);
        ; i<len; i++){
            if(s[i] == '-'){
                if(!pos.empty()) pos.pop();
                ;
                else now = pos.top();
            }else{
                int idx = s[i] - 'a';
                now = Node[now].nxt[idx];
                pos.push(now);
            }

            int ans = Node[now].dis;
            ans = min(ans, GetDP(now));

            printf("%d\n", ans);
        }
    }
}ac;

char s[max_len];
int main(void){__stTIME();__IOPUT();

    int n;

    sci(n);

    ac.init();

    ; i<n; i++){
        scs(s);
        ac.insert(s, strlen(s));
    }

    ac.build();

    scs(s);

    ac.query(s, strlen(s));

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

Nowcoder Typing practice ( Trie 图 )的更多相关文章

  1. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

  2. 【hihoCoder】1036 Trie图

    题目:http://hihocoder.com/problemset/problem/1036 给一个词典dict,词典中包含了一些单词words.要求判断给定的一个文本串text中是否包含这个字典中 ...

  3. 【hihoCoder 1036】Trie图

    看了一下简单的$Trie图$,调模板调啊调一连调了$2h$,最后发现$-'a'$打成$-'A'$了hhh,有种摔键盘的冲动. $Trie图$是$Trie树$上建立“前缀边”,不用再像在$Trie树$上 ...

  4. 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组

    涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...

  5. Trie图和Fail树

    Trie图和AC自动机的区别 Trie图是AC自动机的确定化形式,即把每个结点不存在字符的next指针都补全了.这样做的好处是使得构造fail指针时不需要next指针为空而需要不断回溯. 比如构造ne ...

  6. hdu2457 Trie图+dp

    hdu2457 给定n个模式串, 和一个文本串 问如果修改最少的字符串使得文本串不包含模式串, 输出最少的次数,如果不能修改成功,则输出-1 dp[i][j] 表示长度为i的字符串, 到达状态j(Tr ...

  7. Trie图

    AC自动机是KMP的多串形式,当文本串失配时,AC自动机的fail指针告诉我们应该跳到哪里去继续匹配(跳到当前匹配串的最长后缀去),所以AC自动机的状态是有限的 但是AC自动机具有不确定性, 比如要求 ...

  8. CF 291E. Tree-String Problem [dfs kmp trie图优化]

    CF291E 题意:一棵树,每条边上有一些字符,求目标串出现了多少次 直接求目标串的fail然后一边dfs一边跑kmp 然后就被特殊数据卡到\(O(n^2)\)了... 因为这样kmp复杂度分析的基础 ...

  9. AC自动机相关Fail树和Trie图相关基础知识

    装载自55242字符串AC自动机专栏 fail树 定义 把所有fail指针逆向,这样就得到了一棵树 (因为每个节点的出度都为1,所以逆向后每个节点入度为1,所以得到的是一棵树) 还账- 有了这个东西, ...

随机推荐

  1. 【转贴】使用sar进行性能分析

    使用sar进行性能分析 https://www.cnblogs.com/bangerlee/articles/2545747.html 很早之前就看过 但是自己一直没用过.. 2012-06-12 0 ...

  2. 深入理解分布式系统的2PC和3PC

    协调者 在分布式系统中,每一个机器节点虽然都能明确的知道自己执行的事务是成功还是失败,但是却无法知道其他分布式节点的事务执行情况.因此,当一个事务要跨越多个分布式节点的时候(比如,淘宝下单流程,下单系 ...

  3. 使用Redis實現秒殺功能

    <?php $id = 1; $pdo=new PDO("mysql:host=127.0.0.1;dbname=test","root","r ...

  4. Codeforces 1196D2. RGB Substring (hard version)

    传送门 考虑枚举每一个位置作为可能子段的起点,然后对以这个位置为起点的所有情况下的答案取 $min$ 当固定了起点 $i$ 并且固定了起点 $i$ 最终的字符时,答案也固定了 发现对于所有与 $i \ ...

  5. Dubbo消费方服务调用过程源码分析

    参考:dubbo消费方服务调用过程源码分析dubbo基于spring的构建分析Dubbo概述--调用过程dubbo 请求调用过程分析dubbo集群容错机制代码分析1dubbo集群容错策略的代码分析2d ...

  6. C# 面向对象4 构造函数

    构造函数 1.构造函数用来创建对象,并且可以在构造函数中对对象进行初始化. (给对象的每个属性依次的赋值) 2.构造函数是用来创建对象的特殊方法: 1.方法名和类名一样. 2.没有返回值,连void都 ...

  7. windows10升级更新1709版本 在桌面和文件夹中点击右键刷新,会引起卡顿反应慢

    win10,升级更新,1709,右键,卡机,刷新,反应慢,桌面,文件夹 windows自动升级到1709版本后出现的问题,而之前是没有这种问题的. 最终解决办法:(需要设置注册表) 运行:快捷键Win ...

  8. 富文本编辑器--使用textarea即时更新文本域同步编辑器内容

    使用 textarea wangEditor 从v3版本开始不支持 textarea ,但是可以通过onchange来实现 textarea 中提交富文本内容. <div id="di ...

  9. HTML 5的革新之一:语义化标签一节元素标签。

    摘至于:<HTML 5的革新——语义化标签(一)> HTML 5的革新之一:语义化标签一节元素标签. 在HTML 5出来之前,我们用div来表示页面章节,但是这些div都没有实际意义.(即 ...

  10. docker 入门(2)

    1,多容器环境 运行docker容器 进入容器并查看该容器的IP exit退出容器 运行超小的linux的docker镜像alpine 可以看到如果没有提前把镜像pull到本地,直接run的话,它会自 ...