题目链接

题意 : 中文题、点链接

分析 :

前置技能是 SG 函数、NIM博弈变形

每次可取石子是约数的情况下、那么就要打出 SG 函数

才可以去通过异或操作判断一个局面的胜负

打 SG 函数的时候、由于 N 很大

所以不能使用递归的方式打表、会爆栈

还有要预处理每个数的约数

打出 SG 函数之后

暴力判断初始局面的每堆石子取走约数后是否对答案产生贡献

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scl(i) scanf("%lld", &i)
#define scll(i, j) scanf("%lld %lld", &i, &j)
#define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k)
#define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l)

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;
;

int SG[maxn];
VI divisor[maxn];

inline void init()
{
    ; i<maxn; i++)
        for(int j=i; j<maxn; j+=i)
            divisor[j].pb(i);

    SG[] = ;
    ; i<maxn; i++){
        set<int> s;
        ; j<(int)divisor[i].size(); j++) s.ins(SG[i-divisor[i][j]]);
        ;;j++) if(!s.count(j)){ SG[i] = j; break; }
    }
}

int arr[maxn];
int main(void){__stTIME();__IOPUT();

    init();

    int n;
    sci(n);

    ;
    ; i<n; i++) sci(arr[i]), xorSum ^= SG[arr[i]];

    ;
    ; i<n; i++){
        ; j<(int)divisor[arr[i]].size(); j++){
            if((xorSum ^
                SG[arr[i]] ^
                SG[arr[i] - divisor[arr[i]][j]]) == ) ans++;
        }
    }

    printf("%d\n", ans);

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )的更多相关文章

  1. hdu 5795 A Simple Nim 博弈sg函数

    A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Pro ...

  2. 51 nod1067 Bash游戏 V2(sg函数打表)

    1067 Bash游戏 V2 1.0 秒 131,072.0 KB 5 分 1级题   有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3,4颗,拿到最后1颗石子的人获胜.假设A B都非 ...

  3. POJ 2311 Cutting Game(Nim博弈-sg函数/记忆化搜索)

    Cutting Game 题意: 有一张被分成 w*h 的格子的长方形纸张,两人轮流沿着格子的边界水平或垂直切割,将纸张分割成两部分.切割了n次之后就得到了n+1张纸,每次都可以选择切得的某一张纸再进 ...

  4. hdu 3032 Nim or not Nim? (sg函数打表找规律)

    题意:有N堆石子,每堆有s[i]个,Alice和Bob两人轮流取石子,可以从一堆中取任意多的石子,也可以把一堆石子分成两小堆 Alice先取,问谁能获胜 思路:首先观察这道题的数据范围  1 ≤ N ...

  5. 51nod_1714:B君的游戏(博弈 sg打表)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1714 nim游戏的一个变形,需要打出sg函数的表 #incl ...

  6. UPCOJ9526(SG函数打表,nim游戏异或规则)

    #include<bits/stdc++.h>using namespace std;int f[1007],SG[1007],S[1007];//f为可以选取的石头个数,SG为sg函数, ...

  7. 51nod 1714:B君的游戏(博弈 sg打表)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1714 nim游戏的一个变形,需要打出sg函数的表 #incl ...

  8. (转)博弈 SG函数

    此文为以下博客做的摘要: https://blog.csdn.net/strangedbly/article/details/51137432 ---------------------------- ...

  9. 尼姆博弈+SG函数

    博弈这个东西真的很费脑诶.. 尼姆博奕(Nim Game):游戏者轮流从一堆棋子(或者任何道具)中取走一个或者多个,最后不能再取的就是输家.当指定相应数量时,一堆这样的棋子称作一个尼姆堆 当n堆棋子的 ...

随机推荐

  1. PTA(Basic Level)1048.数字加密

    本题要求实现一种数字加密方法.首先固定一个加密用正整数 A,对任一正整数 B,将其每 1 位数字与 A 的对应位置上的数字进行以下运算:对奇数位,对应位的数字相加后对 13 取余--这里用 J 代表 ...

  2. [转帖](整理)GNU Hurd项目详解

    (整理)GNU Hurd项目详解 http://www.ha97.com/3188.html 发表于: 开源世界 | 作者: 博客教主 标签: GNU,Hurd,详解,项目 Hurd原本是要成为GNU ...

  3. 最短meeting路线(树的直径)--牛客第四场(meeting)

    题意: 给你一棵树,树上有些点是有人的,问你选一个点,最短的(最远的那个人的距离)是多少. 思路: 其实就是树的直径,两遍dfs,dfs第二遍的时候遇到人就更新直径就行了,ans是/2,奇数的话+1. ...

  4. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

  5. Redis学习笔记(一)Windows下redis的安装和启动

    在Windows上安装redis 下载地址:https://github.com/microsoftarchive/redis/releases 选择图中红框标出来的下载,解压到磁盘上,文件夹命名为r ...

  6. JS数据结构的栈和队列操作

    数据结构:列表.栈.队列.链表.字典.散列.图和二叉查找树! 排序算法:冒牌.选择.插入.希尔.归并和快速! 查找算法:顺序查找和二分查找 在平时工作中,对数组的操作很是平常,它提供了很多方法使用,比 ...

  7. Redis5版本集群搭建

    一.简介 1.1 Redis是什么 Redis是一个开源的,使用ANSI C 编写,高性能的Key-Value的NoSQL数据库. 1.2 Redis特点 (1)基于内存 (2)可持久化数据 (3)具 ...

  8. EBS自动行号,行金额自动汇总到头,金额根据币种编号总结

    一.自动行号实现 1.方法一: 只需要将“序号”定义成公式,并将公式设置为:get_block_property('block_name',current_record)就可以实现了,或者把这行语句放 ...

  9. Java APi 之 RMI远程方法调用

    一.什么是RPC RPC全称是remote procedure call,即远程过程调用.它是一种协议,用于从远程计算机上请求服务. 例如有两台服务器A和B,A上的应用想要调用B上应用的方法,但是他们 ...

  10. JavaScript制作九九乘法表

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...