题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386

(luogu) https://www.luogu.org/problemnew/show/P3597

为啥这种题我都不会了啊

题解: 首先如果边权全都为\(1\), 那么就新建一个计数器,每个点连计数器,计数器连个自环。然后邻接矩阵快速幂倍增即可

如果边权有\(2\)和\(3\), 就分别新建一个节点连向出点

细节不少,特别是判断是否大于\(k\)的时候不能爆long long(据说这题数据水,所以我不敢保证下面的代码不会被卡)

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int N = 121;
llong p;
struct Matrix
{
llong a[N+3][N+3]; int n;
Matrix() {}
Matrix(int _n) {n = _n; for(int i=0; i<=n; i++) for(int j=0; j<=n; j++) a[i][j] = 0ll;}
void init(int _n) {n = _n; for(int i=0; i<=n; i++) for(int j=0; j<=n; j++) a[i][j] = 0ll;}
void unitize(int _n) {n = _n; a[0][0] = 0ll; for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) a[i][j] = i==j?1ll:0ll;}
void output() {if(a[0][0]==-1) puts("gg"); for(int i=1; i<=n; i++) {for(int j=1; j<=n; j++) printf("%d ",a[i][j]); puts("");}}
Matrix operator *(const Matrix &arg) const
{
Matrix ret(n);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
for(int k=1; k<=n; k++)
{
if(k==n)
{
if(arg.a[j][k]>0 && (a[i][j]>=p/arg.a[j][k]+1 || ret.a[i][k]>=p-a[i][j]*arg.a[j][k]))
{
ret.a[0][0] = -1;
return ret;
}
}
ret.a[i][k] = ret.a[i][k]+a[i][j]*arg.a[j][k];
}
}
}
llong sum = 0ll;
for(int i=1; i<=n/3; i++)
{
if(sum>=p-ret.a[i][n]) {ret.a[0][0] = -1; return ret;}
sum += ret.a[i][n];
}
return ret;
}
} g,pw[65],tmp;
int n,m; llong solve()
{
pw[0] = g; int i = 0;
for(i=1; i<=61; i++)
{
pw[i] = pw[i-1]*pw[i-1];
if(pw[i].a[0][0]==-1)
{
break;
}
}
if(i==62) {return -1;}
llong ret = 0ll; g.unitize(n+n+n+1);
for(i--; i>=0; i--)
{
tmp = g*pw[i];
if(tmp.a[0][0]!=-1)
{
ret|=(1ll<<i);
g = tmp;
}
}
return ret;
} int main()
{
scanf("%d%d%lld",&n,&m,&p); p+=n;
g.init(n+n+n+1);
for(int i=1; i<=m; i++)
{
int x,y,w; scanf("%d%d%d",&x,&y,&w);
if(w==1) {g.a[x][y]++;}
else if(w==2) {g.a[x+n][y]++;}
else if(w==3) {g.a[x+n+n][y]++;}
}
for(int i=1; i<=n; i++)
{
g.a[i][i+n]++;
g.a[i+n][i+n+n]++;
g.a[i][n+n+n+1]++;
}
g.a[n+n+n+1][n+n+n+1]++;
llong ans = solve();
printf("%lld\n",ans);
return 0;
}

BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)的更多相关文章

  1. BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  2. 【bzoj4386】[POI2015]Wycieczki 矩阵乘法

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  3. [BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】

    题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k ...

  4. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  5. Luogu P3758 [TJOI2017]可乐 | 矩阵乘法

    题目链接 让我们先来思考一个问题,在一张包含$n$个点的图上,如何求走两步后从任意一点$i$到任意一点$j$的方案数. 我们用$F_p(i,j)$来表示走$p$步后从$i$到$j$的方案数,如果存储原 ...

  6. bzoj 1875: [SDOI2009]HH去散步 -- 矩阵乘法

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走, ...

  7. bzoj 2553: [BeiJing2011]禁忌 AC自动机+矩阵乘法

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2553 题解: 利用AC自动机的dp求出所有的转移 然后将所有的转移储存到矩阵中,进行矩阵 ...

  8. BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法

    注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...

  9. bzoj 3329: Xorequ【数位dp+矩阵乘法】

    注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...

随机推荐

  1. c++学习笔记之类和对象(一、类定义)

    类和对象是 C++ 的重要特性,它们使得 C++ 成为面向对象的编程语言. 类是创建对象的模板,一个类可以创建多个对象,每个对象都是类类型的一个变量:创建对象的过程也叫类的实例化.每个对象都是类的一个 ...

  2. 如何实现一个简化版的 jQuery

    对于操作 DOM 来说,jQuery 是非常方便的一个库,虽然如今随着 React, Vue 之类框架的流行,jQuery 用得越来越少了,但是其中很多思想还是非常值得我们学习的,这篇文章将介绍如何从 ...

  3. redis 学习(16)-- redis 持久化

    redis 持久化 什么是持久化 redis 将所有数据保持在内存中,对数据的更新将异步地保存在磁盘中 持久化的方式 1. 快照 快照是某时某刻对数据的完整备份. 在: MySQL Dump Redi ...

  4. WPF使用资源图片

    一.加载本项目的图片 WPF引入了统一资源表示Uri来标识和访问资源.其中较为常见的情况是用Uri加载图像.Uri表达式的一把形式为:协议+授权+路径 协议:pack:// 授权:有两种,一种用于访问 ...

  5. computed、watch、methods的区别

    computed:计算属性是用来声明式的描述一个值依赖了其它的值.当你在模板里把数据绑定到一个计算属性上时,Vue 会在其依赖的任何值导致该计算属性改变时更新 DOM.这个功能非常强大,它可以让你的代 ...

  6. 线程的函数中调用MFC对话框类的变量

    线程的函数中调用MFC对话框类的变量多线程传输文件的对话框 现在想要在对话框上添加一个进度条 为进度条映射变量m_progress这就需要在传输一段文件后就更新m_progress的值使进度条前进 也 ...

  7. access注入

    前面有自己总结详细的mysql注入,自己access注入碰到的比较少,虽然比较简单,但是这里做一个总结 union联合查询法: 因为union前后字段数相同,所以可以先用order by 22 使查询 ...

  8. 免费FQ工具

    这里使用免费的`梯子` 下载赛风 选择Windows下载 下载好之后,直接点击打开,它会自动连接,什么也不要设置,下载的就是一个exe文件,连接成功会打开一个网页,不用管

  9. MySQL5.5配置文件my.ini详解

    [client]port = 3306 [mysqld]port = 3306 ##安装目录 basedir="C:/Program Files (x86)/MySQL/MySQL Serv ...

  10. 使用pt-table-checksum检查主从一致性

    使用 percona 工具检查主从不一致 可以使用 pt-table-checksum  工具检查主从数据的一致性,检查完之后默认会生成一个 percona 库以及一个 checksums 表,记录了 ...