转发说明:by majunman    from HIT    email:2192483210@qq.com

简介:scikit-learn是数据挖掘和数据分析的有效工具,它建立在 NumPy, SciPy, and matplotlib基础上。开源的但商业不允许

1. Supervised learning

1.1. Generalized Linear Models

1.1.1. Ordinary Least Squares最小二乘法

>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> reg.coef_
array([ 0.5, 0.5])

reg-http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression

reg.coef_   是回归函数的结果,即相关系数

具体实验:

print(__doc__)

# Code source: Jaques Grobler
# License: BSD 3 clause import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset
diabetes = datasets.load_diabetes() #加载diabetes数据集(sklearn提供的几种数据集之一,该数据是糖尿病数据集) # Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2] #只加载一个特征值 # Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:] # Create linear regression object
regr = linear_model.LinearRegression() # Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3) plt.xticks(())
plt.yticks(()) plt.show()

  

sklearn学习一的更多相关文章

  1. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  2. sklearn学习总结(超全面)

    https://blog.csdn.net/fuqiuai/article/details/79495865 前言sklearn想必不用我多介绍了,一句话,她是机器学习领域中最知名的python模块之 ...

  3. sklearn学习 第一篇:knn分类

    K临近分类是一种监督式的分类方法,首先根据已标记的数据对模型进行训练,然后根据模型对新的数据点进行预测,预测新数据点的标签(label),也就是该数据所属的分类. 一,kNN算法的逻辑 kNN算法的核 ...

  4. sklearn 学习 第一篇:分类

    分类属于监督学习算法,是指根据已有的数据和标签(分类)进行学习,预测未知数据的标签.分类问题的目标是预测数据的类别标签(class label),可以把分类问题划分为二分类和多分类问题.二分类是指在两 ...

  5. SKlearn | 学习总结

    1 简介 scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包.它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法 ...

  6. sklearn学习笔记3

    Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...

  7. sklearn学习笔记2

    Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...

  8. sklearn学习笔记1

    Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's s ...

  9. 莫烦sklearn学习自修第九天【过拟合问题处理】

    1. 过拟合问题可以通过调整机器学习的参数来完成,比如sklearn中通过调节gamma参数,将训练损失和测试损失降到最低 2. 代码实现(显示gamma参数对训练损失和测试损失的影响) from _ ...

  10. 莫烦sklearn学习自修第八天【过拟合问题】

    1. 什么是过拟合问题 所谓过拟合问题指的是使用训练样本进行训练时100%正确分类或规划,当使用测试样本时则不能正确分类和规划 2. 代码实战(模拟过拟合问题) from __future__ imp ...

随机推荐

  1. Oracle 看出表结构与属性、表空间设计

    1.Oracle 查看表空间 SELECT b.comments as 注释, a.column_name as 列名, a.data_type || '(' || a.data_length || ...

  2. C++学习笔记-面向对象模型探究

    C++中的class从面向对象理论出发,将变量(属性)和函数(方法)集中定义在一起,用于描述现实世界中的类.从计算机的角度,程序依然由数据段和代码段构成.那么C++编译器如何完成面向对象理论到计算机程 ...

  3. 让mysql的id字段变成表的主键

    1.#已经加主键 desc szdj.sys_message_user;alter table sys_message_user add constraint pk_mess_user primary ...

  4. Emgu 学习之HelloWorld

    安装和配置 系统Win10,VS2013,下载Emgu安装包libemgucv-windesktop-3.4.3.3016 安装到了E:\OpenCV\emgucv-windesktop 3.4.3. ...

  5. Akka简介与Actor模型(一)

    前言...... Akka是一个构建在JVM上,基于Actor模型的的并发框架,为构建伸缩性强,有弹性的响应式并发应用提高更好的平台.本文主要是个人对Akka的学习和应用中的一些理解. Actor模型 ...

  6. lambda常用方法

    一:forEach()  循环遍历 List<Integer> costBeforeTax = Arrays.asList(100, 200, 300, 400, 500); costBe ...

  7. C#追加日志文件

    追加日志文件 using System; using System.IO; class DirAppend { public static void Main() { using (StreamWri ...

  8. 【案例分享】在 React 框架中使用 SpreadJS 纯前端表格控件

    [案例分享]在 React 框架中使用 SpreadJS 纯前端表格控件 本期葡萄城公开课,将由国电联合动力技术有限公司,资深前端开发工程师——李林慧女士,与大家在线分享“在 React 框架中使用 ...

  9. 使用mvn archetype:generate快速建立Maven项目目录结构

    1.mvn archetype:generate  按照提示进行选择,默认选的话可以直接按回车键 2.mvn archetype:generate -DgroupId=组织名,公司网址的反写+项目名 ...

  10. 手写Spring MVC

    闲及无聊 又打开了CSDN开始看一看有什么先进的可以学习的相关帖子,这时看到了一位大神写的简历装X必备,手写Spring MVC. 我想这个东西还是有一点意思的 就拜读了一下大佬的博客 通读了一遍相关 ...