p4111 [HEOI2015]小Z的房间[简述矩阵树定理]
分析
[1]无向图
图G的度数矩阵为D,邻接矩阵为A
我们定义这个图的Kirchhoff矩阵为D-A
这个矩阵的任意一个n-1阶主子式的行列式的绝对值就是这个图的生成树个数
[2]有向图
如果要求内向树计数,矩阵是 出度矩阵-邻接矩阵
如果要求外向树计数,矩阵是 入度矩阵-邻接矩阵
注意有向树计数的时候,删除一行一列,必须删除根所在的行列。
对于这个题我们只需要将一个点与周围的非障碍点连边
然后求无向图的生成树个数即可
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int mod = 1e9;
const int dx[] = {,,,-};
const int dy[] = {,-,,};
int n,m,g[][],wh[][],cnt;
char s[][];
inline int gs(){
int i,j,k,ans=;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
g[i][j]=(g[i][j]%mod+mod)%mod;
for(i=;i<=n;i++){
for(j=i;j<=n;j++)
if(g[i][j])break;
if(j>n)return ;
if(j!=i)ans=mod-ans,swap(g[i],g[j]);
for(j=i+;j<=n;j++){
while(g[j][i]){
int t=g[i][i]/g[j][i];
for(k=i;k<=n;k++)
g[i][k]=(g[i][k]-1ll*t*g[j][k]%mod+mod)%mod;
swap(g[i],g[j]);
ans=mod-ans;
}
}
ans=1ll*ans*g[i][i]%mod;
}
return ans;
}
int main(){
int i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<=n;i++){
scanf("%s",s[i]+);
for(j=;j<=m;j++)
if(s[i][j]=='.')
wh[i][j]=++cnt;
}
for(i=;i<=n;i++)
for(j=;j<=m;j++){
if(!wh[i][j])continue;
for(k=;k<;k++)
if(wh[i+dx[k]][j+dy[k]]){
int id=wh[i][j];
g[id][id]++;
g[id][wh[i+dx[k]][j+dy[k]]]--;
}
}
n=cnt-;
printf("%d\n",gs());
return ;
}
p4111 [HEOI2015]小Z的房间[简述矩阵树定理]的更多相关文章
- BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】
题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...
- bzoj 4031: [HEOI2015]小Z的房间【矩阵树定理】
是板子题,因为mod不是质数所以需要辗转相除然而并不知道为啥 高斯消元部分还不知道原理呢--先无脑背过的 #include<iostream> #include<cstdio> ...
- 【BZOJ4031】小Z的房间(矩阵树定理)
[BZOJ4031]小Z的房间(矩阵树定理) 题面 BZOJ 洛谷 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子 ...
- Luogu4111 [HEOI2015]小Z的房间 (矩阵树,辗转相除高斯消元)
除法不能用于同余系,要辗转相除.注意不能加入柱子到矩阵. #include <iostream> #include <cstdio> #include <cstring& ...
- [洛谷P4111][HEOI2015]小Z的房间
题目大意:有一个$n\times m$的房间,一些位置是房间,另一些位置是柱子,相邻两个房间之间有墙,问有多少种方案可以打通一些墙把所有房间连成一棵树,柱子不可以打通 题解:矩阵树定理,把房间当点,墙 ...
- 题解 P4111 [HEOI2015]小 Z 的房间
题解 题目大意:给定一个无向图,求它的生成树个数. 一道裸的矩阵树定理,外加一些建图的技巧. 矩阵树定理 对于一个 \(Laplace\) 矩阵,其去掉任意一行后的行列式即为答案. 行列式不会的看这里 ...
- P4111 [HEOI2015]小Z的房间
你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着.你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把 ...
- P4111 [HEOI2015]小Z的房间 生成树计数
这个题是生成树计数的裸题,中间构造基尔霍夫矩阵,然后构成行列式,再用高斯消元就行了.这里高斯消元有一些区别,交换两行行列式的值变号,且消元只能将一行的数 * k 之后加到别的行上. 剩下就没啥了... ...
- 【bzoj4031】[HEOI2015]小Z的房间 && 【bzoj4894】天赋 (矩阵树定理)
来两道矩阵树模板: T1:[bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形 ...
随机推荐
- webpack前端模块打包器
webpack前端模块打包器 学习网址: https://doc.webpack-china.org/concepts/ http://www.runoob.com/w3cnote/webpack-t ...
- HDU-1394 Minimum Inversion Number (逆序数,线段树或树状数组)
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...
- Webpack4、iView、Vue开发环境的搭建
导读 项目使用了 yarn ,一个快速.可靠.安全的依赖管理工具.yarn 是一个类似于npm的包管理工具,它是由 facebook 推出并开源,它在速度,离线模式,版本控制的方面具有独到的优势.此项 ...
- 洛谷 - P3649 - 回文串 - 回文自动机
https://www.luogu.org/problem/P3649 #include <bits/stdc++.h> using namespace std; typedef long ...
- VS中发布并调试IIS程序
1.创建本地IIS站点 2.修改配置 .net framework 右击项目属性,服务器修改为本地IIS,并且项目URL修改为相对应的站点即可 .net core 右键属性,进入调试栏新建一个配置 选 ...
- 27、前端知识点--webpack面试题(二)
webpack面试题总结 本文主要是对webpack面试会常被问到的问题做一些总结,且文章会不断持续更新 1.webpack打包原理 把所有依赖打包成一个 bundle.js 文件,通过代码分割成单元 ...
- WPF绑定并转换
首先新建个项目,我的项目名叫BindConverterDemo,你的话什么都可以,我这里只是做demo 再建两个类,DataDemo,ConverterDemo 这个是DataDemo类 public ...
- neovim初次安装使用
github下载neovim代码 按readme中安装,中间可能 要安装一些库 将vim的配置关联到nvim,发现和vim是一样的 ln -s ~/.vim ~/.config/nvim ln -s ...
- [转]Oracle 11g 基于CentOS7静默安装教程(无图形界面,远程安装) --有部份地方有问题
Oracle 11g 基于CentOS7静默安装教程(无图形界面,远程安装) [转载]原文地址:http://canonind.blog.51cto.com/8239025/1883066 一.安装前 ...
- rename 重命名文件
1. 使用范例 范例1: 批量修改文件名 [root@localhost data]# touch {a,b,c,d,e}.txt [root@localhost data]# ls a.txt ...