Vijos lxhgww的奇思妙想--求K级祖先
给出一棵树求K级祖先。O(N*logN+Q)
更详细的讲解见:https://www.cnblogs.com/cjyyb/p/9479258.html
/*
要求k级祖先,我们可以把k拆成"2^highbit(x)+tmp 形式
(highbit(x)为x在二进制位下的最高位),然后用倍增的方法把highbit(x)的部分跳了
剩下tmp的同样可以预处理掉,这样预处理就是O(n*logn)的效率,
所以对于每个询问就是O(1)回答,这样的效率就是O(n*logn+q)。
于是就考虑用长链剖分。
讲讲具体的细节操作。
数组:
f[i][j]:i的倍增得到的祖先
d[i]:i i的最深的儿子的深度(用于处理len lenlen)
dep[i]:i的节点深度
son[i]:i的长儿子
len[i]:i为长链顶点的链长
top[i]:i所在长链的顶点
hb[i]:i的highbit highbithighbit值
twi[i]:2^i
预处理:
对于highbit(x) 选择你喜欢的方法做。
对于tmp,用两个动态数组维护,存每条长链的顶点的向上len
向下len的祖先和儿子
(对于每条长链,存链中的节点显然无意义,因为你可以在询问时先跳到top)。
深搜:
一共dfs两遍
dfs1:预处理一些关于树的常规信息,如深度、长儿子
dfs2:处理链长和长链顶点
原文链接:https://blog.csdn.net/hzq_oi/article/details/88595343
*/
#include<bits/stdc++.h>
#define N 300005
using namespace std;
inline int rd()
{
int data=0,w=1;static char ch=0;
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(isdigit(ch))data=(data<<1)+(data<<3)+ch-'0',ch=getchar();
return data*w;
}
int first[N],cnt;
struct node
{int v,nxt;}
e[N<<1];
inline void add(int u,int v)
{
e[++cnt].v=v;
e[cnt].nxt=first[u];
first[u]=cnt;
}
int n,m,ans;
int f[N][20],d[N],dep[N],len[N],top[N],son[N],hb[N],twi[30];
void dfs1(int u,int fa) //根的深度为1
{
d[u]=dep[u]=dep[fa]+1;
f[u][0]=fa;
for(int register i=1;i<=19;i++)
f[u][i]=f[f[u][i-1]][i-1];
for(int register i=first[u];i;i=e[i].nxt)
{
int register v=e[i].v;
if(v==fa)continue;
dfs1(v,u);
if(d[u]<d[v]) //找出重儿子
{
d[u]=d[v];
son[u]=v;
}
}
}
void dfs2(int u,int fa)
{
len[u]=d[u]-dep[top[u]]+1;
if(!son[u])return;
top[son[u]]=top[u];
dfs2(son[u],u);
for(int register i=first[u];i;i=e[i].nxt)
if(e[i].v!=son[u]&&e[i].v!=fa)
top[e[i].v]=e[i].v,dfs2(e[i].v,u);
}
vector<int>up[N],down[N];
inline int query(int x,int k)//求k级祖先
{
if(k>=dep[x])return 0;
if(!k)return x;
x=f[x][hb[k]];//hb[k]代表k这个数字的最高位是2的多少次方
k^=twi[hb[k]];
if(!k)return x;
int register tmp=dep[x]-dep[top[x]];
if(tmp==k)
return top[x];
else
if(tmp<k)return
up[top[x]][k-tmp-1];
//x在某条轻链上,跳到top点后,还不够,不要向上跳
else
return down[top[x]][tmp-k-1];
//x在重链上,跳到top点后,跳过头了,所以还要向下移动下
}
int main()
{
n=rd();
for(int register i=1;i<n;i++)
{int register x=rd(),y=rd();add(x,y);add(y,x);}
dfs1(1,0);
top[1]=1;
dfs2(1,0); for(int i=1;i<=n;i++)
{
if(i!=top[i]) continue;
//找出每条重链的顶点
int register tmp=0,prv=i;
while(tmp<len[i]&&prv)
{
prv=f[prv][0],up[i].push_back(prv),tmp++;
}
tmp=0;prv=i;
while(tmp<len[i])
{
prv=son[prv],down[i].push_back(prv),tmp++;
//向下跳,跳到它的重儿子 }
}
twi[0]=1;
for(int register i=1;i<=20;i++)
twi[i]=twi[i-1]<<1;
for(int register i=1;i<=n;i++)
for(int register j=20;j>=0;j--)
if(twi[j]&i)
{
hb[i]=j;
//对于数字i来说,它转成2进制后最高位是2^j
//例如7的最高位是2^2,8的是2^3
break;
}
m=rd();
while(m--)
{
int register x=rd(),k=rd();
x^=ans;
k^=ans;
ans=query(x,k);
printf("%d\n",ans);
}
return 0;
}
Vijos lxhgww的奇思妙想--求K级祖先的更多相关文章
- [vijos]lxhgww的奇思妙想(长链剖分)
题意 题目链接 Sol 长链剖分 又是一个用各种花式技巧优化的暴力 它的主要思想是:对于每个节点,把深度最深的子节点当做重儿子,它们之间的边当做重边 这样就会有一些非常好的轻质 所有链长总和是\(O( ...
- 2019.01.06 vijos lxhgww的奇思妙想(长链剖分)
传送门 长链剖分模板题. 题意简述:允许O(nlogn)O(nlog_n)O(nlogn)预处理,让你支持O(1)O(1)O(1)查找任意一个点的kkk级祖先. 思路:因为要O(1)O(1)O(1) ...
- Vijos.lxhgww的奇思妙想(k级祖先 长链剖分)
题目链接 https://blog.bill.moe/long-chain-subdivision-notes/ http://www.cnblogs.com/zzqsblog/p/6700133.h ...
- 【Vijos】lxhgww的奇思妙想
题面 题解 求$k$级祖先孙子 为什么要用长链剖分啊??? 倍增并没有慢多少... 其实是我不会 长链剖分做这道题还是看这位巨佬的吧. 代码 #include<bits/stdc++.h> ...
- lxhgww的奇思妙想 长链剖分板子
https://vijos.org/d/Bashu_OIers/p/5a79a3e1d3d8a103be7e2b81 求k级祖先,预处理nlogn,查询o1 //#pragma GCC optimiz ...
- 「vijos」lxhgww的奇思妙想(长链剖分)
传送门 长链剖分的板子(又是乱搞优化暴力) 对于每一个点,我们定义它深度最深的子节点为它的重儿子(为什么不叫长儿子……),他们之间的连边为重边 然后长链剖分有几个性质 1.总链长为$O(n)$ 2.一 ...
- 【Vijos】lxhgww的奇思妙想(长链剖分)
题面 给定一棵树,每次询问一个点的\(k\)次祖先,强制在线. Vijos 题解 长链剖分. 链接暂时咕咕咕了. 现在可以戳链接看题解了 #include<iostream> #inclu ...
- 【LCA求最近公共祖先+vector构图】Distance Queries
Distance Queries 时间限制: 1 Sec 内存限制: 128 MB 题目描述 约翰的奶牛们拒绝跑他的马拉松,因为她们悠闲的生活不能承受他选择的长长的赛道.因此他决心找一条更合理的赛道 ...
- POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)
题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...
随机推荐
- CenterNet
Objects as Points anchor-free系列的目标检测算法,只检测目标中心位置,无需采用NMS 1.主干网络 采用Hourglass Networks [1](还有resnet18 ...
- hdu 3549 网络流最大流 Ford-Fulkerson
Ford-Fulkerson方法依赖于三种重要思想,这三个思想就是:残留网络,增广路径和割. Ford-Fulkerson方法是一种迭代的方法.开始时,对所有的u,v∈V有f(u,v)=0,即初始状态 ...
- 随机发送n位数字+字母的验证码
''' 随机发送n位数字+字母的验证码 ''' import random def get_verified(length): code = '' for i in range(length): nu ...
- 查看系统的DPI
#include <Windows.h> #include <iostream> int main() { SetProcessDpiAwarenessContext(DPI_ ...
- 转:ThreadLocal剖析
转自http://www.cnblogs.com/dolphin0520/p/3920407.html 一.对ThreadLocal的理解 ThreadLocal,很多地方叫做线程本地变量,也有些地方 ...
- Quartz(二)
1 SchedulerFactory 1.1 概述 Quartz是以模块的方式构建的,因为,要使它运行,几个组件必须很好的组合在一起.非常幸运的是,已经有了一些现存的助手可以完成这些工作. 所有Sch ...
- vue history模式下的微信分享
// 微信验证 export function requireConfig() { let url = window.location.href systemApi.wxoption({ url: u ...
- jq实现表格多行列复制
<!DOCTYPE html><html><head> <meta charset="utf-8"> <title>&l ...
- SpringBoot + kaptcha 生成、校对 验证码
1.引入 kaptcha 的 Maven 依赖 <dependency> <groupId>com.github.penggle</groupId> <art ...
- 源于react里面constructor()和super()的使用
es5里面没有继承的话 //构造函数 function People(name,age){ this.age = age; this.name = name } let p1 = new People ...