Cascade R-CNN目标检测
成功的因素:
1.级联而非并联检测器
2.提升iou阈值训练级联检测器的同时不带来负面影响
核心思想:
区分正负样本的阈值u取值影响较大,加大iou阈值直观感受是可以增加准确率的,但是实际上不是,因为这时候正负样本不均衡,所以要做出改变;
所以得出的cascade R-CNN由一系列的检测模型组成,每个检测模型都基于不同IOU阈值的正负样本训练得到,
前一个检测模型的输出作为后一个检测模型的输入(高Iou的输入proposal能得到搞得output iou,且都是大于输入的),因此是stage by stage的训练方式,而且越往后的检测模型,其界定正负样本的IOU阈值是不断上升的。
从图c可以看出,当一个检测模型采用某个阈值(假设u=0.6)来界定正负样本时,那么当输入proposal的IOU在这个阈值(u=0.6)附近时,
该检测模型比基于其他阈值训练的检测模型的效果要好,所以每个检测模型用的IOU阈值要尽可能和输入proposal的IOU接近。
图d的意思是,u表示训练检测模型时所用来区分正负样本的iou阈值;每条彩色线表示不同Iou训练出来的检测模型;
横坐标表示在检测的时候改变区分是否输出为目标的iou阈值,就是最后一步判断是否输出的阈值;
设计的结构如图4,前面的是其他的改进思路,采用这种结构的好处是,大的iou输入得到大的iou输出,每个stage的检测器针对某一范围iou的proposal来检测。
实验得到的结论有:1.仅有0.5的阈值设置并不能获得非常准确的检测,
2.精确的检测需要有适合检测器质量的假设框,(requires hpypotheses that match the detector quality)
思考:能否将这一cascade思想迁移到SSD的检测框架中?
参考自:
https://www.codercto.com/a/25258.html
https://blog.csdn.net/u014380165/article/details/80602027
Cascade R-CNN目标检测的更多相关文章
- CNN目标检测系列算法发展脉络——学习笔记(一):AlexNet
在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). ...
- [转]CNN目标检测(一):Faster RCNN详解
https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...
- 皮卡丘检测器-CNN目标检测入门教程
目标检测通俗的来说是为了找到图像或者视频里的所有目标物体.在下面这张图中,两狗一猫的位置,包括它们所属的类(狗/猫),需要被正确的检测到. 所以和图像分类不同的地方在于,目标检测需要找到尽量多的目标物 ...
- 标题 发布状态 评论数 阅读数 操作 操作 CNN目标检测系列算法发展脉络简析——学习笔记(三):Fast R-CNN
最近两周忙着上网课.投简历,博客没什么时间写,姑且把之前做的笔记放上来把... 下面是我之前看论文时记的笔记,之间copy上来了,内容是Fast R-CNN的,以后如果抽不出时间写博客,就放笔记上来( ...
- CNN之yolo目标检测算法笔记
本文并不是详细介绍yolo工作原理以及改进发展的文章,只用做作者本人回想与提纲. 1.yolo是什么 输入一张图片,输出图片中检测到的目标和位置(目标的边框) yolo名字含义:you only lo ...
- RCNN (Regions with CNN) 目标物检测 Fast RCNN的基础
Abstract: 贡献主要有两点1:可以将卷积神经网络应用region proposal的策略,自底下上训练可以用来定位目标物和图像分割 2:当标注数据是比较稀疏的时候,在有监督的数据集上训练之后到 ...
- 【目标检测】Cascade R-CNN 论文解析
目录 0. 论文链接 1. 概述 2. 网络结构的合理性 3. 网络结构 4. 参考链接 @ 0. 论文链接 Cascade R-CNN 1. 概述 这是CVPR 2018的一篇文章,这篇文章也为 ...
- 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...
- 目标检测 | 经典算法 Cascade R-CNN: Delving into High Quality Object Detection
作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN ...
- 目标检测方法总结(R-CNN系列)
目标检测方法系列--R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD 目录 相关背景 从传统方法到R-CNN 从R-CNN到SPP Fast R-CNN ...
随机推荐
- java 根据excel模板导出文件
<!--读取excel文件,配置POI框架的依赖--> <dependency> <groupId>org.apache.poi</groupId> & ...
- 【LeetCode 57】插入区间
题目链接 [题解] 这题要分四种情况. 第一种.区间在所有区间的前面. 第二种.区间在所有区间的后面. 第三种.区间在某两个区间之间但是没有交集. 第四种.区间和某个区间产生了相交. 对于第四种枚举第 ...
- HDU - 6621 K-th Closest Distance 主席树+二分答案
K-th Closest Distance 主席树第二波~ 题意 给你\(n\)个数\(m\)个询问,问\(i\in [l,r]\)计算每一个\(|a_{i}-p|\)求出第\(k\)小 题目要求强制 ...
- python利用eval方法提升dataframe运算性能
eval方法可以直接利用c语言的速度,而不用分配中间数组,不需要中间内存的占用. 如果包含多个步骤,每个步骤都要分配一块内存 import numpy as npimport pandas as pd ...
- linux从head.s到start_kernelstart_kernel之---内核重定位后分析
参考: https://biscuitos.github.io/blog/ARM-BOOT/ zImage 重定位之后实践 zImage 重定位之后,ARM 将 pc 指针指向了重定位 zImage ...
- (2).net体系
一.C# 和CLR 和.Net Framework 的历史版本对照表 C#版本 CLR版本 Framework版本 1.0 1.0 1.0 1.2 1.1 1.1 2.0 2.0 2 ...
- left、pixelLeft、posLeft的区别
yexj00.style.pixelLeft=50yexj00.style.left=50pxyexj00.style.posLeft=50he.style.pixelLeft=39he.style. ...
- git使用记录九:开发中临时加塞了紧急任务怎么处理
开发中临时加塞了紧急任务怎么处理 隐藏工作区域 git stash git status 查询隐藏的列表 git stash list 处理完bug,提交之后,再恢复隐藏的工作区域 git stash ...
- 【python】 读写文件
#标准输出 sys.stdout.write() sys.stderr.write() #标准输入 while True : try: line = raw_input().rstrip(); exc ...
- 怎么追加byte内容
public byte[] InsertByte(string dx) { List<byte> temp = new List<byte>(); byte[] b= Enco ...