成功的因素:

1.级联而非并联检测器

2.提升iou阈值训练级联检测器的同时不带来负面影响

核心思想:

区分正负样本的阈值u取值影响较大,加大iou阈值直观感受是可以增加准确率的,但是实际上不是,因为这时候正负样本不均衡,所以要做出改变;

所以得出的cascade R-CNN由一系列的检测模型组成,每个检测模型都基于不同IOU阈值的正负样本训练得到,

前一个检测模型的输出作为后一个检测模型的输入(高Iou的输入proposal能得到搞得output iou,且都是大于输入的),因此是stage by stage的训练方式,而且越往后的检测模型,其界定正负样本的IOU阈值是不断上升的。

从图c可以看出,当一个检测模型采用某个阈值(假设u=0.6)来界定正负样本时,那么当输入proposal的IOU在这个阈值(u=0.6)附近时,

该检测模型比基于其他阈值训练的检测模型的效果要好,所以每个检测模型用的IOU阈值要尽可能和输入proposal的IOU接近。

图d的意思是,u表示训练检测模型时所用来区分正负样本的iou阈值;每条彩色线表示不同Iou训练出来的检测模型;

横坐标表示在检测的时候改变区分是否输出为目标的iou阈值,就是最后一步判断是否输出的阈值;

设计的结构如图4,前面的是其他的改进思路,采用这种结构的好处是,大的iou输入得到大的iou输出,每个stage的检测器针对某一范围iou的proposal来检测。

实验得到的结论有:1.仅有0.5的阈值设置并不能获得非常准确的检测,

         2.精确的检测需要有适合检测器质量的假设框,(requires hpypotheses that match the detector quality)

思考:能否将这一cascade思想迁移到SSD的检测框架中?

参考自:

https://www.codercto.com/a/25258.html

https://blog.csdn.net/u014380165/article/details/80602027

Cascade R-CNN目标检测的更多相关文章

  1. CNN目标检测系列算法发展脉络——学习笔记(一):AlexNet

    在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). ...

  2. [转]CNN目标检测(一):Faster RCNN详解

    https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...

  3. 皮卡丘检测器-CNN目标检测入门教程

    目标检测通俗的来说是为了找到图像或者视频里的所有目标物体.在下面这张图中,两狗一猫的位置,包括它们所属的类(狗/猫),需要被正确的检测到. 所以和图像分类不同的地方在于,目标检测需要找到尽量多的目标物 ...

  4. 标题 发布状态 评论数 阅读数 操作 操作 CNN目标检测系列算法发展脉络简析——学习笔记(三):Fast R-CNN

    最近两周忙着上网课.投简历,博客没什么时间写,姑且把之前做的笔记放上来把... 下面是我之前看论文时记的笔记,之间copy上来了,内容是Fast R-CNN的,以后如果抽不出时间写博客,就放笔记上来( ...

  5. CNN之yolo目标检测算法笔记

    本文并不是详细介绍yolo工作原理以及改进发展的文章,只用做作者本人回想与提纲. 1.yolo是什么 输入一张图片,输出图片中检测到的目标和位置(目标的边框) yolo名字含义:you only lo ...

  6. RCNN (Regions with CNN) 目标物检测 Fast RCNN的基础

    Abstract: 贡献主要有两点1:可以将卷积神经网络应用region proposal的策略,自底下上训练可以用来定位目标物和图像分割 2:当标注数据是比较稀疏的时候,在有监督的数据集上训练之后到 ...

  7. 【目标检测】Cascade R-CNN 论文解析

    目录 0. 论文链接 1. 概述 2. 网络结构的合理性 3. 网络结构 4. 参考链接 @ 0. 论文链接 Cascade R-CNN 1. 概述   这是CVPR 2018的一篇文章,这篇文章也为 ...

  8. 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作

    转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...

  9. 目标检测 | 经典算法 Cascade R-CNN: Delving into High Quality Object Detection

    作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN ...

  10. 目标检测方法总结(R-CNN系列)

    目标检测方法系列--R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD 目录 相关背景 从传统方法到R-CNN 从R-CNN到SPP Fast R-CNN ...

随机推荐

  1. 单例设计模式(Singleton)的优化

    单例模式的优化 单例模式懒汉式写法,单例模式的优化有以下四个方面: 使用同步保证线程安全synchronized 使用volatile关键字:volatile关键字提醒编译器后面所定义的变量随时都有可 ...

  2. 08.@Scheduled定时任务、整合jdbcTemplate、mybatis区分多数据源

    @Scheduled注解执行定时任务 import org.springframework.scheduling.annotation.Scheduled; import org.springfram ...

  3. tensorflow的boolean_mask函数

    在mask中定义true,保留与其进行运算的tensor里的部分内容,相当于投影的功能. mask与tensor的维度可以不相同的,但是对应的长度一定要相同,也就是要有一一对应的部分: 结果的维度 = ...

  4. Linux进程前后台管理(&,fg, bg)

    将进程置于后台 xlogo & 会把进程置于后台管理,使用ps命令查看进程 PID. 使用命令jobs [1]+ Running xlogo & 可以看到正在运行的 xlogo 进程. ...

  5. u-tools图床便捷生成markdown图片

    u-tools 图床 上传图片生成markdown图片非常便捷. 支持的图片服务器有几种,其中搜狗.网易和掘金的加载速度更快些: 也可以用阿里与和腾讯云的OSS; 其中网易生成图片不是原图尺寸好像被改 ...

  6. python使用HTMLTestRunner.py生成测试报告

    这里我使用的是python selenium webdriver环境,浏览器驱动安装见selenium 1.下载HTMLTestRunner.py:http://tungwaiyip.info/sof ...

  7. JS中关于数组的操作

    1.如何创建数组: var arr = []; //效率更高 var arr1 = new Array(); var arr2 = new Array(5); //数组的长度为5,当参数为一个时,将会 ...

  8. [CF852H]Bob and stages

    题意:给出平面上\(n\)个点,要求选出\(k\)个点,使得这些点形成一个凸包,且凸包内部没有点,求最大面积.无解输出\(0\). 题解:枚举凸包最左的点\(p\),删除所有在\(p\)左边的点,然后 ...

  9. JavaScript实现Word、Excel、PPT在线预览

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_27626333/article/d ...

  10. Apache JMeter

    https://en.wikipedia.org/wiki/Apache_JMeter Apache JMeter 是 Apache 的一个项目,它是一个负载测试工具可以用于进行各种服务器的性能测试分 ...