视觉里程计:2D-2D 对极几何、3D-2D PnP、3D-3D ICP
参考链接:https://mp.weixin.qq.com/s/89IHjqnw-JJ1Ak_YjWdHvA
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
// #include "extra.h" // use this if in OpenCV2 using namespace std;
using namespace cv; /****************************************************
* 本程序演示了如何使用2D-2D的特征匹配估计相机运动
* **************************************************/ void find_feature_matches(
const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches); void pose_estimation_2d2d(
std::vector<KeyPoint> keypoints_1,
std::vector<KeyPoint> keypoints_2,
std::vector<DMatch> matches,
Mat &R, Mat &t); // 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K); int main(int argc, char **argv) {
if (argc != ) {
cout << "usage: pose_estimation_2d2d img1 img2" << endl;
return ;
}
//-- 读取图像
Mat img_1 = imread(argv[], CV_LOAD_IMAGE_COLOR);
Mat img_2 = imread(argv[], CV_LOAD_IMAGE_COLOR);
assert(img_1.data && img_2.data && "Can not load images!"); vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
cout << "一共找到了" << matches.size() << "组匹配点" << endl; //-- 估计两张图像间运动
Mat R, t;
pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t); //-- 验证E=t^R*scale
Mat t_x =
(Mat_<double>(, ) << , -t.at<double>(, ), t.at<double>(, ),
t.at<double>(, ), , -t.at<double>(, ),
-t.at<double>(, ), t.at<double>(, ), ); cout << "t^R=" << endl << t_x * R << endl; //-- 验证对极约束
Mat K = (Mat_<double>(, ) << 520.9, , 325.1, , 521.0, 249.7, , , );
for (DMatch m: matches) {
Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
Mat y1 = (Mat_<double>(, ) << pt1.x, pt1.y, );
Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
Mat y2 = (Mat_<double>(, ) << pt2.x, pt2.y, );
Mat d = y2.t() * t_x * R * y1;
cout << "epipolar constraint = " << d << endl;
}
return ;
} void find_feature_matches(const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches) {
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2); //-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
//BFMatcher matcher ( NORM_HAMMING );
matcher->match(descriptors_1, descriptors_2, match); //-- 第四步:匹配点对筛选
double min_dist = , max_dist = ; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for (int i = ; i < descriptors_1.rows; i++) {
double dist = match[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for (int i = ; i < descriptors_1.rows; i++) {
if (match[i].distance <= max( * min_dist, 30.0)) {
matches.push_back(match[i]);
}
}
} Point2d pixel2cam(const Point2d &p, const Mat &K) {
return Point2d
(
(p.x - K.at<double>(, )) / K.at<double>(, ),
(p.y - K.at<double>(, )) / K.at<double>(, )
);
} void pose_estimation_2d2d(std::vector<KeyPoint> keypoints_1,
std::vector<KeyPoint> keypoints_2,
std::vector<DMatch> matches,
Mat &R, Mat &t) {
// 相机内参,TUM Freiburg2
Mat K = (Mat_<double>(, ) << 520.9, , 325.1, , 521.0, 249.7, , , ); //-- 把匹配点转换为vector<Point2f>的形式
vector<Point2f> points1;
vector<Point2f> points2; for (int i = ; i < (int) matches.size(); i++) {
points1.push_back(keypoints_1[matches[i].queryIdx].pt);
points2.push_back(keypoints_2[matches[i].trainIdx].pt);
} //-- 计算基础矩阵
Mat fundamental_matrix;
fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT);
cout << "fundamental_matrix is " << endl << fundamental_matrix << endl; //-- 计算本质矩阵
Point2d principal_point(325.1, 249.7); //相机光心, TUM dataset标定值
double focal_length = ; //相机焦距, TUM dataset标定值
Mat essential_matrix;
essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);
cout << "essential_matrix is " << endl << essential_matrix << endl; //-- 计算单应矩阵
//-- 但是本例中场景不是平面,单应矩阵意义不大
Mat homography_matrix;
homography_matrix = findHomography(points1, points2, RANSAC, );
cout << "homography_matrix is " << endl << homography_matrix << endl; //-- 从本质矩阵中恢复旋转和平移信息.
// 此函数仅在Opencv3中提供
recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
cout << "R is " << endl << R << endl;
cout << "t is " << endl << t << endl; }
#include <iostream>
#include <opencv2/opencv.hpp>
// #include "extra.h" // used in opencv2
using namespace std;
using namespace cv; void find_feature_matches(
const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches); void pose_estimation_2d2d(
const std::vector<KeyPoint> &keypoints_1,
const std::vector<KeyPoint> &keypoints_2,
const std::vector<DMatch> &matches,
Mat &R, Mat &t); void triangulation(
const vector<KeyPoint> &keypoint_1,
const vector<KeyPoint> &keypoint_2,
const std::vector<DMatch> &matches,
const Mat &R, const Mat &t,
vector<Point3d> &points
); /// 作图用
inline cv::Scalar get_color(float depth) {
float up_th = , low_th = , th_range = up_th - low_th;
if (depth > up_th) depth = up_th;
if (depth < low_th) depth = low_th;
return cv::Scalar( * depth / th_range, , * ( - depth / th_range));
} // 像素坐标转相机归一化坐标
Point2f pixel2cam(const Point2d &p, const Mat &K); int main(int argc, char **argv) {
if (argc != ) {
cout << "usage: triangulation img1 img2" << endl;
return ;
}
//-- 读取图像
Mat img_1 = imread(argv[], CV_LOAD_IMAGE_COLOR);
Mat img_2 = imread(argv[], CV_LOAD_IMAGE_COLOR); vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
cout << "一共找到了" << matches.size() << "组匹配点" << endl; //-- 估计两张图像间运动
Mat R, t;
pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t); //-- 三角化
vector<Point3d> points;
triangulation(keypoints_1, keypoints_2, matches, R, t, points); //-- 验证三角化点与特征点的重投影关系
Mat K = (Mat_<double>(, ) << 520.9, , 325.1, , 521.0, 249.7, , , );
Mat img1_plot = img_1.clone();
Mat img2_plot = img_2.clone();
for (int i = ; i < matches.size(); i++) {
// 第一个图
float depth1 = points[i].z;
cout << "depth: " << depth1 << endl;
Point2d pt1_cam = pixel2cam(keypoints_1[matches[i].queryIdx].pt, K);//由匹配点的像素坐标得到相机坐标
cv::circle(img1_plot, keypoints_1[matches[i].queryIdx].pt, , get_color(depth1), );//画出匹配点,颜色由深度决定 // 第二个图
Mat pt2_trans = R * (Mat_<double>(, ) << points[i].x, points[i].y, points[i].z) + t;
float depth2 = pt2_trans.at<double>(, );
cv::circle(img2_plot, keypoints_2[matches[i].trainIdx].pt, , get_color(depth2), );
}
cv::imshow("img 1", img1_plot);
cv::imshow("img 2", img2_plot);
cv::waitKey(); return ;
} void find_feature_matches(const Mat &img_1, const Mat &img_2,
std::vector<KeyPoint> &keypoints_1,
std::vector<KeyPoint> &keypoints_2,
std::vector<DMatch> &matches) {
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2); //-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match(descriptors_1, descriptors_2, match); //-- 第四步:匹配点对筛选
double min_dist = , max_dist = ; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for (int i = ; i < descriptors_1.rows; i++) {
double dist = match[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for (int i = ; i < descriptors_1.rows; i++) {
if (match[i].distance <= max( * min_dist, 30.0)) {
matches.push_back(match[i]);
}
}
} void pose_estimation_2d2d(
const std::vector<KeyPoint> &keypoints_1,
const std::vector<KeyPoint> &keypoints_2,
const std::vector<DMatch> &matches,
Mat &R, Mat &t) {
// 相机内参,TUM Freiburg2
Mat K = (Mat_<double>(, ) << 520.9, , 325.1, , 521.0, 249.7, , , ); //-- 把匹配点转换为vector<Point2f>的形式
vector<Point2f> points1;
vector<Point2f> points2; for (int i = ; i < (int) matches.size(); i++) {
points1.push_back(keypoints_1[matches[i].queryIdx].pt);
points2.push_back(keypoints_2[matches[i].trainIdx].pt);
} //-- 计算本质矩阵
Point2d principal_point(325.1, 249.7); //相机主点, TUM dataset标定值
int focal_length = ; //相机焦距, TUM dataset标定值
Mat essential_matrix;
essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point); //-- 从本质矩阵中恢复旋转和平移信息.
recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
} void triangulation(
const vector<KeyPoint> &keypoint_1,
const vector<KeyPoint> &keypoint_2,
const std::vector<DMatch> &matches,
const Mat &R, const Mat &t,
vector<Point3d> &points) {
Mat T1 = (Mat_<float>(, ) <<
, , , ,
, , , ,
, , , );
Mat T2 = (Mat_<float>(, ) <<
R.at<double>(, ), R.at<double>(, ), R.at<double>(, ), t.at<double>(, ),
R.at<double>(, ), R.at<double>(, ), R.at<double>(, ), t.at<double>(, ),
R.at<double>(, ), R.at<double>(, ), R.at<double>(, ), t.at<double>(, )
); Mat K = (Mat_<double>(, ) << 520.9, , 325.1, , 521.0, 249.7, , , );
vector<Point2f> pts_1, pts_2;
for (DMatch m:matches) {
// 将像素坐标转换至相机坐标
pts_1.push_back(pixel2cam(keypoint_1[m.queryIdx].pt, K));
pts_2.push_back(pixel2cam(keypoint_2[m.trainIdx].pt, K));
} Mat pts_4d;
cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d); // 转换成非齐次坐标
for (int i = ; i < pts_4d.cols; i++) {
Mat x = pts_4d.col(i);
x /= x.at<float>(, ); // 归一化
Point3d p(
x.at<float>(, ),
x.at<float>(, ),
x.at<float>(, )
);
points.push_back(p);
}
} Point2f pixel2cam(const Point2d &p, const Mat &K) {
return Point2f
(
(p.x - K.at<double>(, )) / K.at<double>(, ),
(p.y - K.at<double>(, )) / K.at<double>(, )
);
}
视觉里程计:2D-2D 对极几何、3D-2D PnP、3D-3D ICP的更多相关文章
- SLAM入门之视觉里程计(1):特征点的匹配
SLAM 主要分为两个部分:前端和后端,前端也就是视觉里程计(VO),它根据相邻图像的信息粗略的估计出相机的运动,给后端提供较好的初始值.VO的实现方法可以根据是否需要提取特征分为两类:基于特征点的方 ...
- 第三篇 视觉里程计(VO)的初始化过程以及openvslam中的相关实现详解
视觉里程计(Visual Odometry, VO),通过使用相机提供的连续帧图像信息(以及局部地图,先不考虑)来估计相邻帧的相机运动,将这些相对运行转换为以第一帧为参考的位姿信息,就得到了相机载体( ...
- 视觉slam十四讲个人理解(ch7视觉里程计1)
参考博文::https://blog.csdn.net/david_han008/article/details/53560736 https://blog.csdn.net/n66040927/ar ...
- SLAM入门之视觉里程计(2):相机模型(内参数,外参数)
相机成像的过程实际是将真实的三维空间中的三维点映射到成像平面(二维空间)过程,可以简单的使用小孔成像模型来描述该过程,以了解成像过程中三维空间到二位图像空间的变换过程. 本文包含两部分内容,首先介绍小 ...
- SLAM入门之视觉里程计(5):单应矩阵
在之前的博文OpenCV,计算两幅图像的单应矩阵,介绍调用OpenCV中的函数,通过4对对应的点的坐标计算两个图像之间单应矩阵\(H\),然后调用射影变换函数,将一幅图像变换到另一幅图像的视角中.当时 ...
- 关于视觉里程计以及VI融合的相关研究(长期更新)
1. svo 源码:https://github.com/uzh-rpg/rpg_svo 国内对齐文章源码的研究: (1)冯斌: 对其代码重写 https://github.com/yueying/O ...
- (3)视觉里程计 Visual Odometry
首先分析include头文件下的slamBase.h文件 # pragma once // 各种头文件 // C++标准库 #include <fstream> #include < ...
- SLAM——视觉里程计(一)feature
从现在开始下面两篇文章来介绍SLAM中的视觉里程计(Visual Odometry).这个是我们正式进入SLAM工程的第一步,而之前介绍的更多的是一些基础理论.视觉里程计完成的事情是视觉里程计VO的目 ...
- SLAM入门之视觉里程计(2):两视图对极约束 基础矩阵
在上篇相机模型中介绍了图像的成像过程,场景中的三维点通过"小孔"映射到二维的图像平面,可以使用下面公式描述: \[ x = MX \]其中,\(c\)是图像中的像点,\(M\)是一 ...
随机推荐
- hdu 2089 不要62 (数位dp)
Description 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别 ...
- SCP-Py-001
项目编号:Py-001 项目等级:Euclid 特殊收容措施: Py-001必须被存储于基金会主站的网络硬盘中,并切断一切与互联网的连接. Py-001突破收容在网络上传播后,一旦在一台计算机上被下载 ...
- 【Java架构:基础技术】一篇文章搞掂:Spring Boot 官方文档解读
本文篇幅较长,建议合理利用右上角目录进行查看(如果没有目录请刷新). 本文内容大部分是翻译和总结官方文档,可以到https://docs.spring.io/spring-boot/docs查看(此地 ...
- Linux v4l2编程(摄像头信息采集)
基于Linux3.4.2,自己做一点儿视频信息采集及网络传输的小实验,边做边学,一些基础知识同步整理..... 1. 定义 V4L2(Video For Linux Two) 是内核提供给应用程序访问 ...
- Java学习之构造函数
构造函数特点: 函数名和类名相同 没有返回值(不用定义返回值类型)作用: 对象初始化注意: 如果类没有定义构造函数时,系统会默认定义一个无参的构造函数 如果定义了构造函数,系统不会定义构造函 ...
- 2019 ACM-ICPC 南京 现场赛 K. Triangle (二分)
题意 给定一个三角形和一个点 \(p\),如果该点不在三角形边上直接输出 \(-1\),否则在三角形上找一点 \(q\),使得线段 \(pq\) 平分三角形面积. 思路 看完题想都没想直接二分了. 就 ...
- WPF 依赖附加属性
附加属性的本质是一个依赖属性,与普通的依赖属性区别: 1:注册方法名不一样,如 DependencyProperty.RegisterAttached 2:没有普通的属性包装器,而是通过get和set ...
- sql server 与 oracle的区别(转)
--1.数据类型不同. --sql server 的数据类型:int ,smallint ,char,varchar,nchar,nvarchar,ntext,datetime,smalld ...
- jpql简单l查询
JPQL全称Java Persistence Query Language package com.ytkj.entity; import javax.persistence.*; import ja ...
- Cocos2d-x在Windows平台环境的搭建
| 版权声明:本文为博主原创文章,未经博主允许不得转载. windows平台下配置Cocos2d-X引擎所需的压缩文件和可执行文件,如下: 下载链接: adt: http://tools.a ...