E. Boxers

给定N个数字,每个数字可以加一或者减一

使得结果集合中不同数字个数最多

贪心

用桶装数

假如相同的数字$i$超过三个,则上面$i+1$,下面$i-1$都可以分一个

如果相同数字$i$只有两个,优先$i-1$

如果只有一个也要优先$i-1$

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define sc(x) scanf("%I64d",&x);
#define read(A) for(int i=0;i<4*N;i++) scanf("%I64d",&A[i]);
#define P pair<ll,ll>
ll N;
ll q;
ll A[];
bool B[];
int main()
{
sc(N);
for(int i=; i<N; i++)
{
sc(q);
A[q]++;
}
for(int i=; i<=; i++)
{
if(A[i]>=)
{
if(i>)
{
// A[i-1]++;
B[i-]=;
}
B[i]=;
B[i+]=;
}
else if(A[i]==)
{
if(i>&&B[i-]==)
{
B[i-]=;
}
else if(B[i+]==)
{
B[i+]=;
}
B[i]=;
}
else if(A[i]==)
{
//cout<<i<<B[i]<<endl;
if(i>&&B[i-]==)B[i-]=;
else if(B[i]==)B[i+]=;
else B[i]=;
}
}
int ans=;
for(int i=; i<=; i++)
{
if(B[i]){ans++;//cout<<i<<endl;
} }
cout<<ans<<'\n';
}

E. Boxers的更多相关文章

  1. CF #579 (Div. 3) E.Boxers

    E.Boxers time limit per test2 seconds memory limit per test256 megabytes inputstdin outputstdout The ...

  2. Codeforces Round #579 (Div. 3) E. Boxers (贪心)

    题意:给你一组数,每个数都可以进行一次加一减一,问最后最多能有多少不同的数. 题解:我们可以用桶存每个数的次数,然后枚举\([1,150001]\)来求对答案的贡献,然后贪心,这里我们不用担心其他乱七 ...

  3. bootstrap-validator使用

    bootstrap-validator是一款与bootstrap相结合的表单前端验证模块,官方网址:http://1000hz.github.io/bootstrap-validator/ 下面内容大 ...

  4. 1.1 NCE21 Daniel Mendoza

    1.text translation Two hundred years ago, boxing matches were very popular in England. At that time/ ...

  5. NCE3

    Lesson1  A puma at large Pumas are large, cat-like animals which are found in America. When reports ...

  6. New Concept English three(21)

    27W 59 Boxing matches were very popular in England two hundred years ago. In those days, boxers foug ...

  7. lesson 21 Daniel Mendoza

    lesson 21 Daniel Mendoza bare 赤裸的 :boxers fought with bare fists crude 天然的:crude sugar, crude oil 粗俗 ...

  8. codeforces #579(div3)

    codeforces #579(div3) A. Circle of Students 题意: 给定一个n个学生的编号,学生编号1~n,如果他们能够在不改变顺序的情况下按编号(无论是正序还是逆序,但不 ...

  9. Codeforces Round #579 (Div. 3)

    Codeforces Round #579 (Div. 3) 传送门 A. Circle of Students 这题我是直接把正序.逆序的两种放在数组里面直接判断. Code #include &l ...

随机推荐

  1. 2019JS必看面试题

    2019JS必看面试题:https://www.jianshu.com/p/f1f39d5b2a2e 1. javascript的typeof返回哪些数据类型. 答案:string,boolean,n ...

  2. P1067多项式输出

    这道题是2009普及组的题,仍然是一个字符串+模拟.(蒻到先不刷算法) 这道题的题干给了很多的提示,也很全面,但是当我把种种情况都考虑到了后,在写代码的过程中仍然出现了很多的错误,wa了三四次.其实导 ...

  3. getopt_long函数解析命令行参数

    转载:http://blog.csdn.net/hcx25909/article/details/7388750 每一天你都在使用大量的命令行程序,是不是感觉那些命令行参数用起来比较方便,他们都是使用 ...

  4. Django、Flask、Tornado的区别?

    Django:Python 界最全能的 web 开发框架,battery-include 各种功能完备,可维护性和开发速度一级棒.常有人说 Django 慢,其实主要慢在 Django ORM 与数据 ...

  5. C#多线程下更新UI的几种方法

    1. 使用UI线程的SynchronizationContext的Post/Send方法,这种情况一般在窗体构造函数或者FormLoad中获取同步上下文: 范例: public partial cla ...

  6. C# 静态方法 静态属性 调用静态方法

    C#的类中可以包含两种方法:静态方法和非静态方法. 使用了static 修饰符的方法为静态方法,反之则是非静态方法. 静态方法是一种 特殊的成员方法,它不属于类的某一个具体的实例,而是属于类本身.所以 ...

  7. CentOS7.6下设置mysql服务开机启动

    在centos7中所有对服务的管理都集中到了systemctl当中,所以服务的启动.关闭.重启.开机启动等等的操作都可以用systemctl. systemctl对服务的管理都是通过配置文件,配置文件 ...

  8. vb6中word编程总结

    1,在project\references 中加入microsoft word 9.0 object library 2, 启动word    Dim wApp As Word.Application ...

  9. Revolver Maps-3D地球仪网站定制

    这是个网站统计的小插件,大家可以看到那些国家,哪些城市对本网站进行了访问,很直观的一种表现方式. 这个小插件不需要你写任何代码,只需要去它官方网站定制你自己需要的代码.它的地址是:http://www ...

  10. De Moivre–Laplace theorem

    网址:https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem De Moivre–Laplace 中心极限定理的证明.主要用到s ...