PAT_A1069#The Black Hole of Numbers
Source:
Description:
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number
6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.For example, start from
6767
, we'll get:7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (.
Output Specification:
If all the 4 digits of N are the same, print in one line the equation
N - N = 0000
. Else print each step of calculation in a line until6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
Keys:
- 字符串处理
Attention:
- 早期的PAT考试更注重算法的效率(过于依赖容器会超时),而现在的PAT考试更注重解决问题的能力(强调容器的使用)
- to_string()会超时
Code:
#include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std; int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE int n1,n2,n;
vector<int> p();
scanf("%d",&n);
do
{
for(int i=; i<; i++)
{
p[i]=n%;
n/=;
}
sort(p.begin(),p.end(),less<char>());
n1 = p[]*+p[]*+p[]*+p[];
sort(p.begin(),p.end(),greater<char>());
n2 = p[]*+p[]*+p[]*+p[];
n = n2-n1;
printf("%04d - %04d = %04d\n", n2,n1,n);
}while(n!= && n!=); return ;
}
PAT_A1069#The Black Hole of Numbers的更多相关文章
- PAT 1069 The Black Hole of Numbers
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
- PAT 1069 The Black Hole of Numbers[简单]
1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...
- pat1069. The Black Hole of Numbers (20)
1069. The Black Hole of Numbers (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, ...
- 1069. The Black Hole of Numbers (20)【模拟】——PAT (Advanced Level) Practise
题目信息 1069. The Black Hole of Numbers (20) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B For any 4-digit inte ...
- pat 1069 The Black Hole of Numbers(20 分)
1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...
- PAT 甲级 1069 The Black Hole of Numbers (20 分)(内含别人string处理的精简代码)
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
- 1069 The Black Hole of Numbers (20分)
1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...
- 1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...
- The Black Hole of Numbers (strtoint+inttostr+sort)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...
随机推荐
- Ecshop 商品详情页如何添加立即购买按钮
1,加到位置 <li class="add_cart_li"> <a href="javascript:addToCart1({$goods.goods ...
- D Dandan's lunch
链接:https://ac.nowcoder.com/acm/contest/338/D来源:牛客网 题目描述 As everyone knows, there are now n people pa ...
- 一个简单的winform程序调用webservices
本文原创,如需转载,请标明源地址,谢谢合作!http://blog.csdn.net/sue_1989/article/details/6597078 本文的编写IDE为VSTS2008和.NET F ...
- harbar仓库的接口测试
一.接口测试命令 api接口文档:https://github.com/goharbor/harbor/blob/release-1.7.0/docs/swagger.yaml 1)查看所属项目的信息 ...
- k3 cloud成本调整单引入单据后,再做出库成本核算。成本调整单列表已审核的单据消失,非已审核的单据还在,这是出库成本核算设置参数的问题吗?
存货核算时,会将“期末余额调整”类型的的调整单删除后,再重新产生:因此引入后不要再做出库核算,或者引入其它类型的单据.
- windows下nvm的安装及使用
由于更新了npm版本之后导致npm的命令都会报错,一顿百度,明白了nvm可以管理node版本的,下面是操作过程: 如果在安装nvm之前已经下载了node 需要把node卸载!!! 需要把node卸载! ...
- GeneXus笔记本—常用函数(下)
这篇是常用函数的最后一节 当然 我这里聊的还不是全部的,需要各位朋友继续在工作中去深入才行啊 ,毕竟从入门到入土....┌(; ̄◇ ̄)┘ 1:Sleep 这个函数你们应该能猜到 ”To allow m ...
- chrome插件研发手册
chrome插件研发手册 一:需求前景 对于研发的小伙伴来说,总会遇到这样的需求,想要通过代码操作已有网站的行为动作,如:自动填充表格内容(表单内容太多,想一键将表单内容填充):自动登录网站(网站登录 ...
- winform 自定义控件属性在属性面板中显示
Jan.David Nothing is impossible, the word itself says 'I'm possible'!" — Audrey Hepburn winform ...
- 【FTP】FTP(文件传输协议)工作原理(SFTP)
目前在网络上,如果你想把文件和其他人共享.最方便的办法莫过于将文件放FTP服务器上,然后其他人通过FTP客户端程序来下载所需要的文件. 1.FTP架构 如同其他的很多通讯协议,FTP通讯协议也采用客户 ...