Quantitative Strategies for Achieving Alpha(一)
1. 怎么构建测试
所有的测试五等分,表明我们的回测的universe被分为五个组,根据我们要测试的公司因子的值。
Quintiles provide a clear answer to that question: if a strategy works, the top quintile should outperform, the bottom quintile should underperform, and there should be some linearity of returns among the qunintiles in between.
2. The backtest summary
(1) The years over which the test returns were calculated.
(2) Compound annual growth rates by quintile, based on the annually run portfolio returns.
(3) Average excess returns versus our Backtest Universe
(4) The percentage of one-year periods that the strategy outperforms the Universe.
(5) The percentage of rolling three-year periods that the stragety outperforms the Universe.
(6) The maximum gain realized over any one-year period
(7) The maximum loss sustained over any one-year period
(8) Sharpe ration of qunitile returns.
(9) The standard deviation of quintile returns.
(10) Beta of quintile returns versus the Backtest Universe. This represents a measure of how volatile a strategy is relative to the overall Universe. A number greater than 1 indicates a strategy that is more volatile than the Universe, while a number less than 1 indicates a strategy that is less volatile.
(11) Alpha of quintile returns versus Backtest Universe.
(12) Average portfolio size.
(13) Average number of companies outperforming.
(14) Average number of companies underperforming.
(15) The median portfolio value of the first factor used in this strategy.
(16) The median portfolio value of the second factor used in the strategy.
(17) The average market capitalization of the portfolios by quintile over the testing period.
3. Benchmarks
A quantitative strategy that works should have all or most of the following characteristics.
(1) Significant outperformance for the top quintile. For single-factor strategies, which have large average portfolio sizes, I like to see at least a 2% average excess return for the top quintile versus the Universe. For more focused, two-factor strategies, excess returns of 4% or more are preferable.
(2) Significant underperformance of the bottom qunitile.
(3) Good linearity of excess returns among the quintiles.
(4) Strong consistency of returns over time.
(5) Low volatility and low maximum loss for the top quintile/high volatility and high maximum loss for the bottom quintile. Both the Sharpe ration and Alpha can be used to provide an idea of a stragety's risk-adjusted returns, where risk is represented by volatility.
Quantitative Strategies for Achieving Alpha(一)的更多相关文章
- Quantitative Strategies for Achieving Alpha (三)
chapter 4: Profitability Profitability measures we tested include return on invested capital, return ...
- Quantitative Startegies for Achieving Alpha(二)
Chapter 3 The Day-To-Day Drivers Of Stock Market Returns Summary: (1) Earning growth is the primary ...
- Should You Build Your Own Backtester?
By Michael Halls-Moore on August 2nd, 2016 This post relates to a talk I gave in April at QuantCon 2 ...
- Fast R-CNN论文阅读摘要
论文链接: https://arxiv.org/pdf/1504.08083.pdf 代码下载: https://github.com/rbgirshick/fast-rcnn Abstract Co ...
- (zhuan) Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Evolution Strategies as a Scalable Alternative to Reinforcement Learning this blog from: https://blo ...
- 一些公司对quantitative的要求
来自日月光华BBS: Company: UBS AG Job Title: Quantitative Developers / Analysts (Entry Level, Multiple Posi ...
- BitCoin Trading Strategies BackTest With PyAlgoTrade
Written by Khang Nguyen Vo, khangvo88@gmail.com, for the RobustTechHouse blog. Khang is a graduate f ...
- 图像抠图算法学习 - Shared Sampling for Real-Time Alpha Matting
一.序言 陆陆续续的如果累计起来,我估计至少有二十来位左右的朋友加我QQ,向我咨询有关抠图方面的算法,可惜的是,我对这方面之前一直是没有研究过的.除了利用和Photoshop中的魔棒一样的技术或者 ...
- 第六次团队作业——Alpha冲刺之事后诸葛亮
Deadline:2016-11-24 22:00pm Alpha冲刺,很多同学经历了"Learning by doing"的学一门新的编程语言.学Git.学做一个完整的项目.但是 ...
随机推荐
- robotframework json解析
用robotframework做接口测试,现在用的最多的就是json格式的数据,刚开始接触会感觉一脸懵逼,不知道怎么去取里面的值.在这里简单介绍一下,其实本身json取值不会太难,只要理解层次关系,一 ...
- JVM监控工具之JVisualVM
一.简介 JVisualVM是Netbeans的profile子项目,已在JDK6.0 update 7 中自带(bin/jvisualvm.exe),能够监控线程,内存情况,查看方法的CPU时间和内 ...
- Delphi中的进制转换
二进制转换 function binToDec(Value: string): integer; var str: string; i: integer; begin Str := UpperCase ...
- 12 oracle 数据库坏块--物理坏块-ORA-01578/ORA-01110
oracle 数据库坏块--物理坏块 数据坏块的类型物理坏块:通常是由于硬件损坏如磁盘异常导致.内存有问题.存储链有问题. IO有问题.文件系统有问题. Oracle本身的问题等逻辑坏块:可能都是软件 ...
- shoi 魔法树
Harry Potter新学了一种魔法:可以改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术.这棵果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u],保证有fa ...
- Spoj 2798 Qtree3
一棵结点为黑色或白色的树,初始都是白色的.有两种操作 1 将一个结点换颜色 2 询问从根到结点u路径上面的第一个黑色点,没有则输出-1 InputIn the first line there are ...
- (转载)gcc编译选项总结
转载自:https://blog.csdn.net/gatieme/article/details/21389603 常用编译选项 gcc and g++分别是gnu的c & c++编译器 g ...
- linux/linux学习笔记-初识linux(mooc)
一.linux简介 linux版本:内核版本和发行版本 linux企业应用: 1.基于linux的企业服务器 2.linux在嵌入式领域应用 android底层Linux : ios底层unix li ...
- 第三章 四大组件之Activity(一)生命周期
1.生命周期: onCreate()->onStart()->onResume()->onPause()->onStop()->onDestroy() 2.各种状况下Ac ...
- 选择排序--python
def findSmallest(arr): smallest = arr[0] smallest_index = 0 for i in range(1, len(arr)): if arr[i] & ...