洛谷 P4902 乘积 (约数筛,前缀和(积))
洛谷P4902乘积
题意简述:
给 $ t $ 组 $ (a,b) $ 求:
$ \prod_{i=A}{B}\prod_{j=1}{i}(\frac{i}{j})^{\lfloor \frac{i}{j} \rfloor}\ (\bmod \ 19260817) $
$ solution: $
考试都去想 $ T2 $ 了……
题目是真的不错,首先看到题面我们可以想到三个角度:
- 预处理再回答
- 分子分母可以分开求
- 将询问拆成 $ (1,b)/(1,a-1) $ 于是可以默认从一开始
然后我们先看分子, $ \prod_{i=1}{n}\prod_{j=1}{i}i^{\lfloor \frac{i}{j} \rfloor} $ 这个东西我们可以先求出对于每一个 $ i $ 的 $ \prod_{j=1}{i}i{\lfloor \frac{i}{j} \rfloor} $ ,然会前缀积。对于每个 $ \prod_{j=1}{i}i{\lfloor \frac{i}{j} \rfloor} $ 我们可以考虑化简: $ i{\prod_{j=1}{i} \lfloor \frac{i}{j} \rfloor} $ 。这个指数我们观察法(或者将 $ i-1 $ 和 $ i $ 比较)可以发现和约数合数有关,并且就是约数前缀和。而约数前缀和是 $ nlogn $ 的,符合要求。
然后我们看分母, $ \prod_{i=1}{n}\prod_{j=1}{i}(\frac{1}{j})^{\lfloor \frac{i}{j} \rfloor} $ ,这个同样可以先求出对于每一个 $ i $ 的 $ \prod_{j=1}^{i}\frac{1}{j} ^{\lfloor \frac{i}{j} \rfloor} $ ,然会前缀积。其实 $ \frac{1}{j} $ 可以通过预处理逆元来完成,实际上我们只需要知道求 $ \prod_{j=1}{i}j{\lfloor \frac{i}{j} \rfloor} $ 即可。这个东西我们将 $ i-1 $ 和 $ i $ 比较,可以发现每次 $ i+1 $ 这个式子就会乘上 $ i $ 的所有约数的乘积。用约数筛法可以递推得到。
上述两个过程都可以在约数筛的同时一并完成,处理好逆元,还可以 $ O(1) $ 回答。
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#define ll long long
#define db double
#define rg register int
using namespace std;
const int mod=19260817;
int t,n;
int a[1000005]; //询问
int b[1000005];
int f[1000005]; //分子
int g[1000005]; //分母
int s[1000005]; //答案
int inv[1000005];
inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar()))if(ch=='-')sign=1;
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
if(sign)return -res; else return res;
}
inline int ksm(ll x,int y){ //快速幂
rg res=1;
while(y){
if(y&1)res=res*x%mod;
x=x*x%mod; y>>=1;
}return res;
}
int main(){
t=qr(); inv[1]=1;
for(rg i=1;i<=t;++i){
a[i]=qr(),b[i]=qr();
n=max(n,max(a[i],b[i])); //求上界
}
for(rg i=2;i<=n;++i) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod; //线性求逆元
for(rg i=0;i<=n;++i) g[i]=1; //初始化
for(rg i=1;i<=n;++i){
for(rg j=i;j<=n;j+=i)
++f[j],g[j]=(ll)g[j]*inv[i]%mod; //将这个数的贡献计入它的倍数里
f[i]+=f[i-1]; //约数个数前缀和
g[i]=(ll)g[i-1]*g[i]%mod; //约数前缀积
} f[0]=g[0]=s[0]=1;
for(rg i=1;i<=n;++i){
f[i]=ksm(i,f[i]); //计算逆元
f[i]=(ll)f[i-1]*f[i]%mod; //约数个数的前缀和的前缀积
g[i]=(ll)g[i-1]*g[i]%mod; //约数前缀积的前缀积
s[i]=(ll)f[i]*g[i]%mod; //计算1-i的答案
}
for(rg i=1;i<=t;++i){
rg x=a[i],y=b[i];
printf("%lld\n",(ll)s[y]*ksm(s[x-1],mod-2)%mod); //(a~b)=(1~b)/(1~(a-1))
}
return 0;
}
洛谷 P4902 乘积 (约数筛,前缀和(积))的更多相关文章
- 洛谷P4902乘积
题面链接 洛谷 题意简述 求\(\prod_{i=A}^B\prod_{j=1}^i \lgroup \frac{i}{j} \rgroup ^{\lfloor \frac{i}{j} \rfloor ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...
- 洛谷$P$3327 约数个数和 $[SDOI2015]$ 莫比乌斯反演
正解:莫比乌斯反演 解题报告: 传送门! 先考虑证明一个结论,$d_{i\cdot j}=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]$ 看起来就很对的样子,但还是证下趴$QwQ ...
- Solution -「洛谷 P5325」Min_25 筛
\(\mathcal{Description}\) Link. 对于积性函数 \(f(x)\),有 \(f(p^k)=p^k(p^k-1)~(p\in\mathbb P,k\in\mathbb ...
- 【埃氏筛】洛谷P3383埃氏筛模板
思路: 如果我们要筛出 [1, n] 内的所有素数,使用 [1, √n] 内的素数去筛就可以了 设bool型数组 a,a[i] 表示 i 是否被某个素数筛过 从 2 开始枚举每个数 i: 若 a[i] ...
- [洛谷P3383][模板]线性筛素数-欧拉筛法
Description 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) Input&Output Input 第一行包含两个正整数N.M,分别表示查询的 ...
- 洛谷P1209-最大公约数与最小公倍数问题
一个萌新的成长之路 Discription 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P, ...
随机推荐
- python - 多进程 Value、Array应用记录
在代码优化的过程中,碰到了这样一个问题:一个进程中我定义了几个全局变量,然后我又Process了几个子进程,子进程中是否可以各自对全局变量进行修改?最后全局变量会取哪个值呢? 经过一番尝试以后得到结果 ...
- Quartz最佳实践
本文来自对http://www.quartz-scheduler.org/documentation/best-practices.html的翻译. 表示还没用过Quartz,正准备用的,然后在官网上 ...
- Python学习之==>网络编程
一.什么是网络编程 使用Python进行网络编程,就是通过Python打开一个网站,或者请求一个http接口.可以通过标准模块urllib实现,也可以通过更简单易用的第三方模块requests实现. ...
- 调用user32.dll显示其他窗口
/// 该函数设置由不同线程产生的窗口的显示状态 /// </summary> /// <param name="hWnd">窗口句柄</param& ...
- Java多线程学习——sleep和yield
Thread.sleep(); Thread.yield(); 相同点: 让线程暂停运行. 都是静态方法,可以直接调用. 不同点: sleep让线程从运行状态进入阻塞状态,但是不放开手中的资源. yi ...
- webView实现网页缩放
项目中遇到要实现webview上面的网页缩放功能,在网上查了资料加自己实践后得出结论: //缩放开关,设置此属性,仅支持双击缩放,不支持触摸缩放 mWebView.getSettings().setS ...
- 手把手教你SOAP访问webservice并DOM解析返回的XML数据(转)
http://blog.csdn.net/u012534831/article/details/51357111 前言: 目前我们项目组还在采用webservice这种http方式,并且某些网站服务提 ...
- mysql 恢复数据时中文乱码
mysql恢复数据时中文乱码,解决办法. 用source命令导入mysql数据库怎么设置中文编码 1.导出数据时指定编码在导出mysql sql执行文件的时候,指定一下编码格式: mysqldump ...
- [转帖]16nm国内最先进 兆芯展示x86 KX-6000八核处理器
16nm国内最先进 兆芯展示x86 KX-6000八核处理器 https://www.cnbeta.com/articles/tech/847125.htm 在近日的2019北京国际互联网科技博览会暨 ...
- sqlplus无法登陆?
关键词:error 6 initialize sqlplus,ORA-27101: shared memory realm does not exist 1.error 6 initialize sq ...