2019hdu多校 Minimal Power of Prime
题目链接:Click here
题目大意:求一个数分解质因数后的最小幂指数
Solution:
首先,我们肯定是不能直接暴力求解的
我们先考虑筛出1e4范围以内的所有质数,把x所有这个范围内的质因子筛掉
那么现在它的数值范围就变成了1e14了,考虑此时他还存在没有被筛掉的质因子的情况
因为我们已经筛掉了1e4以内的质数,所以此时它的质因子的大小是大于1e4的,那么它的指数大小最大为4
我们可以直接对此时的x开根来判断指数是否为2、4,对于指数为3的情况我们则二分判断,若都不满足,则他为质数
Code:
#include<bits/stdc++.h>
#define int unsigned long long
using namespace std;
const int N=1e4+1;
int n,tot,ans;
int prime[N],isprime[N];
int min(int a,int b){return a<b?a:b;}
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
void prepare(){
for(int i=2;i<=N;i++){
if(!isprime[i]) prime[++tot]=i;
for(int j=1;j<=tot&&prime[j]*i<=N;j++){
isprime[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
}
}
int calc(int x){return x*1ll*x*1ll*x;}
int find(){
int l=N,r=N*100;
while(l<=r){
int mid=l+r>>1,x=calc(mid);
if(x<n) l=mid+1;
if(x>n) r=mid-1;
if(x==n) return 1;
}return 0;
}
void solve(){
n=read(),ans=60;
for(int i=1;i<=tot&&prime[i]<=n;i++){
if(n%prime[i]==0){int t=0;
while(n%prime[i]==0){
n/=prime[i];
++t;
}ans=min(ans,t);
}
}if(n==1) return printf("%lld\n",ans),void();
int u1=sqrt(n),u2=sqrt(u1),flag=0;
if(u2*u2*u2*u2==n) ans=min(ans,4),flag=1;
else if(u1*u1==n) ans=min(ans,2),flag=1;
if(find()) ans=min(ans,3),flag=1;
if(!flag) ans=1;
printf("%lld\n",ans);
}
signed main(){
prepare();
int t=read();
while(t--) solve();
return 0;
}
2019hdu多校 Minimal Power of Prime的更多相关文章
- 2019HDU多校Minimal Power of Prime——分段讨论&&思维
题目 将 $n$($1 < n \leq 10^{18}$)质因数分解,求质因数幂的最小值. 分析 直接质因数分解,不太行. 可以这样想,对小区间质因数分解,n变小了,再枚举答案. 打印1-10 ...
- 2019杭电多校第四场hdu6623 Minimal Power of Prime
Minimal Power of Prime 题目传送门 解题思路 先打\(N^\frac{1}{5}\)内的素数表,对于每一个n,先分解\(N^\frac{1}{5}\)范围内的素数,分解完后n变为 ...
- [2019杭电多校第四场][hdu6623]Minimal Power of Prime
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6623 题目大意为求一个数的唯一分解的最小幂次.即120=23*31*51则答案为1. 因为数字太大不能 ...
- HDU 6623 Minimal Power of Prime
Time limit 1000 ms Memory limit 65536 kB OS Windows 中文题意 给一个数n,设将n质因数分解后可以得到 \[n=\prod_{i=1}^{\omega ...
- HDU 6623"Minimal Power of Prime"(数学)
传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 定义 $ans$ 表示最终答案: ①如果 $ans \ge 5 ...
- HDU 6623 Minimal Power of Prime(数学)
传送门 •题意 给你一个大于 1 的正整数 n: 它可以分解成不同的质因子的幂的乘积的形式,问这些质因子的幂中,最小的幂是多少. •题解 把[1,10000]内的素数筛出来,然后对于每个素$P$数遍历 ...
- HDU 6623 Minimal Power of Prime(思维)题解
题意: 已知任意大于\(1\)的整数\(a = p_1^{q_1}p_2^{q_2} \cdots p_k^{q_k}\),现给出\(a \in [2,1e18]\),求\(min\{q_i\},q ...
- 2019 Multi-University Training Contest 4 - 1010 - Minimal Power of Prime
http://acm.hdu.edu.cn/showproblem.php?pid=6623 题意,给50000个1e18级别的数N,求它质因数分解里面的最小的指数(不算0) 比赛的时候给划了一个1e ...
- 【HDOJ6623】Minimal Power of Prime(Powerful Number)
题意:给定大整数n,求其质因数分解的最小质数幂 n<=1e18 思路:常规分解算法肯定不行 考虑答案大于1的情况只有3种:质数的完全平方,质数的完全立方,以及p^2*q^3,p,q>=1三 ...
随机推荐
- vue-蒙层弹窗里的内容滚动。外层大页面禁止滚动
此需求 有两种方法,第一种,这种方法适用于,底层 和弹窗是两个平行的没有关系的两部分.重叠(https://blog.csdn.net/yuhk231/article/details/741717 ...
- Hive Error : Java heap space 解决方案
Java heap space问题一般解决方案: 设置 set io.sort.mb=10; 排序所使用的内存数量,默认值是100M,和mapred.child.java.opts相对应,opts默认 ...
- 【6.18校内test】T1多项式输出
日常题前废话: 首先so amazing 的一件事,因为在洛谷上立下了的flag,然后这次考试前两道题都是刚刚做过不久的题emmm(相当于白送200吗qwq,但是这阻挡不了我第三题不会的脚步qwq) ...
- python3.6 使用newspaper库的Article包来快速抓取网页的文章或者新闻等正文
我主要是用了两个方法来抽去正文内容,第一个方法,诸如xpath,css,正则表达式,beautifulsoup来解析新闻页面的时候,总是会遇到这样那样各种奇奇怪怪的问题,让人很头疼.第二个方法是后面标 ...
- java hashmap&concurrentHashmap源理
Java集合:HashMap底层实现和原理(源码解析) https://www.cnblogs.com/java-jun-world2099/p/9258605.html HashMap源码解析JDK ...
- AT&T推出云5G网络开源工具Airship
导读 AT&T新推出的云5G网络依赖于一个名为“Airship”的开源供应工具,该工具在周一发布了第一个版本. AT&T负责网络云的副总裁Amy Wheelus告诉LightReadi ...
- ieda与svn的配置与使用
一.idea配置svn 快捷键Ctrl+Alt+s或者File--Settings-- Subversion 设置svn客户端(小乌龟)的svn.exe可执行程序(如果找不到,请看另一篇文章) ...
- UI 设计中的渐变
简评: 渐变是通过两种或多种不同的色彩来绘制一个元素,同时在颜色的交界处进行衰减变化的一种设计.从拟物到扁平再到渐变,人们慢慢发现它能创造出从未有过的一种色彩感觉 -- 独特.现代和清爽.(本文译者@ ...
- [POJ1664]放苹果(动态规划)
[POJ1664]放苹果 Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. Input 第 ...
- Idea集成使用SVN教程
第一步:下载svn的客户端,通俗一点来说就是小乌龟啦!官网下载地址:https://tortoisesvn.net/downloads.html 下载之后直接安装就好了,但是要注意这里,选择安装所有的 ...