[Luogu1821][USACO07FEB]银牛派对Silver Cow Party
由题意可知,我们需要求的是很多个点到同一个店的最短距离,然后再求同一个点到很多个点的最短距离。
对于后者我们很好解决,就是很经典的单源最短路径,跑一边dijkstra或者SPFA即可。
然而对于前者,我们应该怎么解决呢?难道我们需要求一边Floyd?当然不可能!\(O(n^3)\)的时间复杂度,对于我们的\(n<=1000\)是果断要超时的。
深入分析,对于一张图,A到B的最短距离,应该等于B到A,在反转一张图以后的最短距离。所谓反转一张图,就是把变得方向调转。这一点是很显然的!
因此,对于问题一,我们只需要把图反转,然后求那个点到其它的最短距离即可。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define rep(i,a,n) for(register int i=(a);i<=(n);++i)
#define per(i,a,n) for(register int i=(a);i>=(n);--i)
#define fec(i,x) for(register int i=head[x];i;i=Next[i])
#define debug(x) printf("debug:%s=%d\n",#x,x)
#define mem(a,x) memset(a,x,sizeof(a))
template<typename A>inline void read(A&a){a=0;A f=1;int c=0;while(c<'0'||c>'9'){c=getchar();if(c=='-')f*=-1;}while(c>='0'&&c<='9'){a=a*10+c-'0';c=getchar();}a*=f;}
template<typename A,typename B>inline void read(A&a,B&b){read(a);read(b);}
template<typename A,typename B,typename C>inline void read(A&a,B&b,C&c){read(a);read(b);read(c);}
const int maxn=1000+7,maxm=100000+7,INF=0x7f7f7f7f;
int u[maxm],v[maxm],w[maxm],Next[maxm],head[maxn],tot;
int u2[maxm],v2[maxm],w2[maxm],Next2[maxm],head2[maxn],tot2;
int n,m,p,x,y,z,ans;
int dist1[maxn],dist2[maxn];
bool visit[maxn];
inline void addedge(int x,int y,int z){
u[++tot]=x;v[tot]=y;w[tot]=z;
Next[tot]=head[x];head[x]=tot;
}
inline void addedge2(int x,int y,int z){
u2[++tot2]=x;v2[tot2]=y;w2[tot2]=z;
Next2[tot2]=head2[x];head2[x]=tot2;
}
void Dijkstra(int *u,int *v,int *w,int *head,int *Next,int *dist,int s){
mem(visit,0);dist[s]=0;
rep(i,1,n){
int Min=INF,x;
rep(i,1,n)if(!visit[i]&&dist[i]<Min)Min=dist[i],x=i;
visit[x]=1;
fec(i,x)if(!visit[v[i]]&&dist[v[i]]>dist[x]+w[i])dist[v[i]]=dist[x]+w[i];
}
}
void Init(){
read(n,m,p);
rep(i,1,m){
read(x,y,z);
addedge(x,y,z);
addedge2(y,x,z);
}
}
void Work(){
mem(dist1,0x7f);mem(dist2,0x7f);
Dijkstra(u,v,w,head,Next,dist1,p);
Dijkstra(u2,v2,w2,head2,Next2,dist2,p);
rep(i,1,n)ans=max(ans,dist1[i]+dist2[i]);
printf("%d\n",ans);
}
int main(){
Init();
Work();
return 0;
}
[Luogu1821][USACO07FEB]银牛派对Silver Cow Party的更多相关文章
- 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
- 洛谷 P1821 [USACO07FEB]银牛派对Silver Cow Party 题解
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
- P1821 [USACO07FEB]银牛派对Silver Cow Party
题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...
- 洛谷P1821 [USACO07FEB]银牛派对Silver Cow Party
题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...
- luogu P1821 [USACO07FEB]银牛派对Silver Cow Party
题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...
- 「Luogu 1821」[USACO07FEB]银牛派对Silver Cow Party
更好的阅读体验 Portal Portal1: Luogu Portal2: POJ Description One cow from each of N farms \((1 \le N \le 1 ...
- [USACO07FEB]银牛派对Silver Cow Party
题目简叙: 寒假到了,N头牛都要去参加一场在编号为X(1≤X≤N)的牛的农场举行的派对(1≤N≤1000),农场之间有M(1≤M≤100000)条有向路,每条路长Ti(1≤Ti≤100). 每头牛参加 ...
- [USACO07FEB]银牛派对Silver Cow Party---最短路模板题
银牛排队 对于我这种蒟蒻来说,还是不要跑一次单元最短路.跑两次好写呀(- ̄▽ ̄)- 而题目中是有向图.如果如果按照题意进行最短路的话.就会出现一个单终点最短路和一个单起点最短路 对于单起点自然就是套模 ...
- 洛谷 P1821 [USACO07FEB]银牛派对Silver Cow Party
银牛派对 正向建图+反向建图, 两边跑dijkstra,然后将结果相加即可. 反向建图以及双向建图的做法是学习图论的必备思想. #include <iostream> #include & ...
随机推荐
- dos编辑文件上传到unix系统多余^M删除方法
linux上的文件sz到window编辑后多出^M, 方法一: 1.grep -anR '^M' filename |wc -l2.crontab -e 或vim filename3.:set ff ...
- Mac下用命令行压缩和解压rar文件的方法
废话不多说,直接进入主题 第一步:下载RAR工具包,根据自己需要下载相对应的版本 第二步:解压对应的压在的压缩包rarosx-5.4.0.tar.gz(我下载的是5.4.0版本) 第三步:从终端进入到 ...
- time in china
https://www.timeanddate.com/worldclock/china
- Dos.Common - 目录、介绍
引言: Dos.Common是一个开发中的常用类库,如HttpHelper.LogHelper.CacheHelper.CookieHelper.MapperHelper等等.与Dos.WeChat. ...
- PHP 中 Error 和 Exception 两种异常的特性及日志记录或显示
PHP 文档: Error Exception 参考: 深入理解PHP原理之异常机制 我们什么时候应该使用异常 异常和错误 所有示例基于 PHP7. 应用中,关于错误的最佳实践是: 必须报告错误 开发 ...
- C# DataTable删除行Delete与Remove的问题
DataTable删除行使用Delete后,只是该行被标记为deleted,但是还存在,用Rows.Count来获取行数时,还是删除之前的行数,需要使用datatable.AcceptChanges( ...
- 在reshard过程中,将会询问reshard多少slots:
How many slots do you want to move (from 1 to 16384)?,取值范围为1~16384,其中16384为redis cluster的拥有的slots总数, ...
- canvas绘制小人开口和闭口
css: <style> body{ text-align: center; } canvas{ background: #ddd; } </style>canvas标签:&l ...
- poj3280Cheapest Palindrome
给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符Add与Delete的代价,求将S变为回文串的最小代价和. Input 第一行 ...
- CSS中设置字体样式
<style type="text/css"> body{ font-family: SimHei,"微软雅黑",sans-serif; } < ...