题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4671

题解

半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了。

类似于一般的容斥和反演题,我们发现整个图是联通的图非常不好求。于是我们转化为整个图钦定了有 \(i\) 个块必须不连通,其余任意的方案数。

然后考虑这个怎么求,我们可以暴力枚举一下把这些数分成很多组,显然方案数就时 \(B_n\)(贝尔数,就是 \(\sum\limits_{i=0}^n \begin{Bmatrix}n\\i\end{Bmatrix}\) 的和,在 \(n \leq 10\) 的时候都不超过十万级别)。

然后就是相当于有一些边不能存在,其余的别可以任意存在。考虑用一个线性基来维护。由于边数不超过 \(\frac{n(n-1)}2\),所以可以用 ll 表示。然后问题转化为一个数有多少个子集存在于线性基中。

但是一个数有多少个子集存在于线性基中不太好维护,经过某位同学的提示,可以想到把那些可以任意为 \(0/1\) 的位扔掉,只记录只能为 \(0\) 的位,把这些位扔进线性基。最后只需要用线性基求出有多少种方案使得异或和为 \(0\) 就可以了。


以下是代码,时间复杂度为 \(O(B_nn^2m)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
template<typename I>
inline void read2(char *s, I &x) {
int f = 0, c;
while (!isdigit(c = *s++)) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = *s++)) x = (x << 1) + (c & 15);
f ? x = -x : 0;
} const int N = 45 + 7;
const int M = 60 + 7; int n, m, sn, ssn;
int a[N], bl[N], ss[N];
ll b[M], f[N], S[N][N];
pii dy[N];
char s[N], p[N]; struct XXJ {
ll a[N];
inline void cls() { memset(a, 0, sizeof(a)); }
inline bool ins(ll x) {
for (int i = ssn - 1; ~i; --i)
if ((x >> i) & 1) {
if (a[i]) x ^= a[i];
else return a[i] = x, 1;
}
return 0;
}
inline int count() {
int cnt = 0;
for (int i = ssn - 1; ~i; --i) if (a[i]) ++cnt;
return cnt;
}
} gg; inline void calc(int y) {
ss[0] = 0;
for (int i = 0; i < sn; ++i)
if (bl[dy[i].fi] != bl[dy[i].se]) ss[++ss[0]] = i;
ssn = ss[0], gg.cls();
for (int i = 1; i <= m; ++i) {
ll c = 0;
for (int j = ss[0]; j; --j) c = c << 1 | ((b[i] >> ss[j]) & 1);
gg.ins(c);
}
f[y] += 1ll << (m - gg.count());
} inline void dfs(int x, int y) {
if (x == n + 1) return calc(y);
for (int i = 1; i <= y + 1; ++i) bl[x] = i, dfs(x + 1, std::max(y, i));
} inline void work() {
dfs(1, 0);
ll ans = 0;
S[0][0] = 1;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= i; ++j) S[i][j] = S[i - 1][j - 1] + (i - 1) * S[i - 1][j];
for (int i = 1; i <= n; ++i)
if ((i - 1) & 1) ans -= S[i][1] * f[i];
else ans += S[i][1] * f[i];
printf("%lld\n", ans);
} inline void init() {
read(m);
for (int i = 1; i <= m; ++i) {
scanf("%s", s + 1);
int nn = strlen(s + 1);
std::reverse(s + 1, s + nn + 1);
n = (1 + (int)sqrt(1 + 8 * nn)) >> 1;
read2(s + 1, b[i]);
}
sn = 0;
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j) dy[sn++] = pii(i, j);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

BZOJ4671 异或图 斯特林反演+线性基的更多相关文章

  1. bzoj4671 异或图(斯特林反演,线性基)

    bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...

  2. bzoj4671: 异或图——斯特林反演

    [BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...

  3. BZOJ4671 异或图(容斥+线性基)

    题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...

  4. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

  5. bzoj 4671 异或图——容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...

  6. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  7. bzoj4671: 异或图

    bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...

  8. BZOJ4671异或图

    题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 ...

  9. P5169 xtq的异或和(FWT+线性基)

    传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张 ...

随机推荐

  1. 9:关于Maven工程的文件标识(定义java文件源码,资源文件)

  2. JVM虚拟机运行机制

    JVM虚拟机运行机制 什么是JVM?虚拟机是物理机器的软件实现.Java是用在VM上运行的WORA(Write Once Run Anywhere)概念而开发的.编译器将Java文件编译为Java . ...

  3. selenium 浏览器无界面模式运行

    以Chrome浏览器为例: 方法一: from selenium.webdriver import Chrome, ChromeOptions opt = ChromeOptions() # 创建Ch ...

  4. 「THUPC 2017」机场 / Airport

    https://loj.ac/problem/2403 题解 神仙题. 练习赛的时候想了个假建图. 正解太神仙了. 先把不合法情况判掉. 先对时间离散化,每个时间点开一个点. 然后把他们一次串起来,中 ...

  5. Hibernate入门学习笔记

    1.Hibernate是什么? 2.hibernate怎么配置? 3.SessionFactory是干什么的?有哪些方法经常用? 4.hibernate的现成的增删改查方法怎么使用?都有哪些方法?哪些 ...

  6. WebGIS常用代码集锦

    一.普通代码 1.坐标转换 ol.proj.transform(coordinate, source, destination) ol.proj.transform(coordinate, 'EPSG ...

  7. POJ 1066 Treasure Hunt [想法题]

    题目链接: http://poj.org/problem?id=1066 --------------------------------------------------------------- ...

  8. day31—CSS Reset 与页面居中布局

    转行学开发,代码100天——2018-04-16 报名的网易前端开发课程今天正式开课了,这也是毕业后首次付费进行的正式培训课程学习.以此,记录每天学习内容. 今天学了两个方面的知识: 1. CSS   ...

  9. delphi 获得时间戳 毫秒数

    function DateTimeToMilliseconds(const ADateTime: TDateTime): Int64; //获得毫秒var LTimeStamp: TTimeStamp ...

  10. Git013--多人协作

    Git--多人协作 本文来自于:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/ ...