今日内容概要

  • scrapy架构和目录介绍
  • scrapy解析数据
  • setting中相关配置
  • 全站爬取cnblgos文章
  • 存储数据
  • 爬虫中间件和下载中间件
  • 加代理,加header,集成selenium

内容详细

1、scrapy架构和目录介绍

# pip3 install scrapy
# 创建项目:scrapy startproject cnblogs_spider 等同于django创建项目 # 创建爬虫:scrapy genspider cnblogs www.cnblogs.com 等同于创建app
本质就是在spiders文件夹下创建一个py文件,写入一些代码 # 运行爬虫:scrapy crawl 爬虫名

1.1 项目目录介绍

cnblogs_spider  # 项目名字
-cnblogs_spider # 项目下一级文件夹
--spiders # 项目下二级文件夹,下面放了一个个爬虫文件
---__init__.py
---cnblogs.py # 创建的一个个的爬虫文件
-__init__.py
-items.py # 模型类写了一些字段---》类似于django的models
-middlewares.py # 中间件:爬虫中间件和下载中间件
-pipelines.py # 管道:存储数据的代码写在这
-settings.py # 项目的配置文件
-scrapy.cfg # 项目上线需要用到,不用管 # 重点:
咱们以后主要是在cnblogs.py 爬虫文件中写爬取和解析的逻辑,pipelines.py写存储

1.2 scrapy架构

# 引擎(EGINE)-->大总管,负责全部的数据流向--》内置的,咱们不需要写
引擎负责控制系统所有组件之间的数据流,并在某些动作发生时触发事件 # 调度器(SCHEDULER)---》对要爬取的地址进行排队,去重
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回
可以想像成一个URL的优先级队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 # 下载器(DOWLOADER)--》真正负责下载---》高效的异步模型
用于下载网页内容, 并将网页内容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的 # 爬虫(SPIDERS)--》咱们重点写的地方,解析响应,从响应中提取要保存的数据和下一次爬取的地址
SPIDERS是开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求 # 项目管道(ITEM PIPLINES)---》存储数据的逻辑---》可以存到文件,redis,mysql。。。
在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作 # 下载器中间件(Downloader Middlewares)--》用的多
位于Scrapy引擎和下载器之间,主要用来处理从EGINE传到DOWLOADER的请求request(加请求头,加cookie,加代理),已经从DOWNLOADER传到EGINE的响应response进行一些处理 # 爬虫中间件(Spider Middlewares)---》用的少
位于EGINE和SPIDERS之间,主要工作是处理SPIDERS的输入(即responses)和输出(即requests)

1.3 py文件直接运行爬虫

# 在项目根目录下创建一个运行脚本
# 右键运行它就可以运行爬虫,不需要每次都敲命令 from scrapy import cmdline # cmdline.execute(['scrapy', 'crawl', 'cnblogs', '--nolog']) # 不打印日志
cmdline.execute(['scrapy', 'crawl', 'cnblogs']) # 打印日志

2、scrapy解析数据

###################################  重点
1 response对象有css方法和xpath方法
css中写css选择器
xpath中写xpath选择 2 重点1:
xpath取文本内容
'.//a[contains(@class,"link-title")]/text()'
xpath取属性
'.//a[contains(@class,"link-title")]/@href'
css取文本
'a.link-title::text'
css取属性
'img.image-scale::attr(src)' 3 重点2:
.extract_first() 取一个
.extract() 取所有

3、setting中相关配置

3.1 基本配置

# 两套配置,内置一套,用户一套

ROBOTSTXT_OBEY = False  # 是否遵循爬虫协议,如果写了它,一般网站都不让爬,基本写成false

USER_AGENT = '浏览器头' # 爬虫请求头中USER_AGENT是什么,做成浏览器的样子
LOG_LEVEL='ERROR' # 日志级别改成ERROR,以后错误日志会打印,普通日志不打印 #---------#####-------
SPIDER_MIDDLEWARES=[] # 爬虫中间件,可以写多个 DOWNLOADER_MIDDLEWARES=[] # 下载中间件类,配置在这,可以配多个 ITEM_PIPELINES=[] # 保存数据,会执行到的类,类内部写保存逻辑

3.2 提高爬虫效率

# 1 增加并发:
默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100 # 2 降低日志级别:
在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = 'INFO' # 3 禁止cookie:
如果不是真的需要cookie,则在scrapy爬取数据时可以禁止cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False # 4 禁止重试:
对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False # 5 减少下载超时:
如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s

4、全站爬取cnblgos文章

# 只爬了首页---》下一页,文章详情页没有爬取
# 文章--》文章对象(标题,作者,摘要,详情。。。)---》把整站都爬取完成

4.1 request和response对象传递参数

# 在request中通过meta传递
yield Request(url=article_url,callback=self.parse_detail,meta={'item':item}) # 在response中通过meta取出
item=response.meta.get('item')

4.2 解析出下一页地址并继续爬取

# 使用
yield Request(url=article_url,callback=self.parse_detail,meta={'item':item}) yield Request(url=next_url)

5、存储数据

# 关于mysql出现Data too long for column的解决方案   打开my.ini,将其中sql-mode节中的STRICT_TRANS_TABLES这个属性去掉;

pipelines.py:

import pymysql

class CnblogsSpiderPipeline:
# 所有的保存都用一个连接,最后存完把连接关闭,爬虫一启动打开数据库连接,爬虫关闭,关闭数据库连接 def open_spider(self, spider):
print("我开了")
self.conn = pymysql.connect(
user='root',
password="123",
host='127.0.0.1',
database='cnblogs',
port=3306,
autocommit=True # 自动提交
)
self.cursor = self.conn.cursor() def process_item(self, item, spider):
# 每个文章都会一次次的触发该方法的执行,在这里写保存逻辑
print('pipline:', item['title'])
# self.cursor.execute('insert into article (title,`desc`,detail,author_name,author_img) values (%s,%s,%s,%s,%s)',
# args=[item['title'], item['desc'], item['detail'], item['author_name'],
# item['author_img'], ]) return item def close_spider(self, spider):
print('我关了')
self.cursor.close()
self.conn.close() class CnblogsSpiderFilePipeline:
def process_item(self, item, spider):
return item

6、爬虫中间件和下载中间件

# 爬虫和下载中间件要使用,需要在配置文件中:

SPIDER_MIDDLEWARES = {
'crawl_cnblogs.middlewares.CrawlCnblogsSpiderMiddleware': 5,
} DOWNLOADER_MIDDLEWARES = {
'crawl_cnblogs.middlewares.CrawlCnblogsDownloaderMiddleware': 5,
}

7、加代理,加header,集成selenium

# 在下载中间件的process_reqeust方法中

# 1 加cookie
# request.cookies['name']='lqz'
# request.cookies= {} # 2 修改header
# request.headers['Auth']='asdfasdfasdfasdf'
# request.headers['USER-AGENT']='ssss' # 3 加代理
request.meta['proxy']='http://103.130.172.34:8080' # 4 fake_useragent模块,可以随机生成user-aget
from fake_useragent import UserAgent ua = UserAgent()
print(ua.ie) #随机打印ie浏览器任意版本
print(ua.firefox) #随机打印firefox浏览器任意版本
print(ua.chrome) #随机打印chrome浏览器任意版本
print(ua.random) #随机打印任意厂家的浏览器

scrapy架构与目录介绍、scrapy解析数据、配置相关、全站爬取cnblogs数据、存储数据、爬虫中间件、加代理、加header、集成selenium的更多相关文章

  1. Scrapy实战篇(八)之Scrapy对接selenium爬取京东商城商品数据

    本篇目标:我们以爬取京东商城商品数据为例,展示Scrapy框架对接selenium爬取京东商城商品数据. 背景: 京东商城页面为js动态加载页面,直接使用request请求,无法得到我们想要的商品数据 ...

  2. scrapy爬取cnblogs文章列表

    scrapy爬取cnblogs文章 目标任务 安装爬虫 创建爬虫 编写 items.py 编写 spiders/cnblogs.py 编写 pipelines.py 编写 settings.py 运行 ...

  3. 爬虫---scrapy全站爬取

    全站爬取1 基于管道的持久化存储 数据解析(爬虫类) 将解析的数据封装到item类型的对象中(爬虫类) 将item提交给管道, yield item(爬虫类) 在管道类的process_item中接手 ...

  4. Python爬虫入门教程 42-100 爬取儿歌多多APP数据-手机APP爬虫部分

    1. 儿歌多多APP简单分析 今天是手机APP数据爬取的第一篇案例博客,我找到了一个儿歌多多APP,没有加固,没有加壳,没有加密参数,对新手来说,比较友好,咱就拿它练练手,熟悉一下Fiddler和夜神 ...

  5. 利用python爬取58同城简历数据

    利用python爬取58同城简历数据 利用python爬取58同城简历数据 最近接到一个工作,需要获取58同城上面的简历信息(http://gz.58.com/qzyewu/).最开始想到是用pyth ...

  6. 爬虫黑科技,我是怎么爬取indeed的职位数据的

    最近在学习nodejs爬虫技术,学了request模块,所以想着写一个自己的爬虫项目,研究了半天,最后选定indeed作为目标网站,通过爬取indeed的职位数据,然后开发一个自己的职位搜索引擎,目前 ...

  7. 简单又强大的pandas爬虫 利用pandas库的read_html()方法爬取网页表格型数据

    文章目录 一.简介 二.原理 三.爬取实战 实例1 实例2 一.简介 一般的爬虫套路无非是发送请求.获取响应.解析网页.提取数据.保存数据等步骤.构造请求主要用到requests库,定位提取数据用的比 ...

  8. Python网页解析库:用requests-html爬取网页

    Python网页解析库:用requests-html爬取网页 1. 开始 Python 中可以进行网页解析的库有很多,常见的有 BeautifulSoup 和 lxml 等.在网上玩爬虫的文章通常都是 ...

  9. 使用Selenium爬取网站表格类数据

    本文转载自一下网站:Python爬虫(5):Selenium 爬取东方财富网股票财务报表 https://www.makcyun.top/web_scraping_withpython5.html 需 ...

随机推荐

  1. Spring 支持的事务管理类型?

    Spring 支持两种类型的事务管理:编程式事务管理:这意味你通过编程的方式管理事务,给你带来极大的灵 活性,但是难维护.声明式事务管理:这意味着你可以将业务代码和事务管理分离,你只需用 注解和 XM ...

  2. 学习saltstack (七)

    一.SaltStack概述 Salt,,一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, ...

  3. 遇到问题之“postman报Unsupported Media Type: Content type 'text/plain;charset=UTF-8' not supported”

    postman报Unsupported Media Type: Content type 'text/plain;charset=UTF-8' not supported postman之所以报Uns ...

  4. 安装Prettier

    安装Prettier Prettier是优化代码格式的工具,可优化JavaScript.TypeScript.JSON等代码及配置文件. 使用命令yarn add -D --exact prettie ...

  5. Asp.Net Core之Identity应用(上篇)

    一.前言 在前面的篇章介绍中,简单介绍了IdentityServer4持久化存储机制相关配置和操作数据,实现了数据迁移,但是未对用户实现持久化操作说明.在总结中我们也提到了, 因为IdentitySe ...

  6. 如何保证同事的代码不会腐烂?一文带你了解 阿里巴巴 COLA 架构

    一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第1天,点击查看活动详情. 本文开始前,问大家一个问题,你觉得一份业务代码,尤其是互联网业务代码,都有哪些特点? 我能想到的有这几点: ...

  7. java中抛出throw关键字是怎么用的? 举例?

    5.抛出throw关键字 马克-to-win:我们先说5/0的原理,当程序运行到5/0的时候,java系统JVM会在后台new出一个除0异常实例,之后把这个实例传入catch块儿供开发者使用.马克-t ...

  8. 学生管理系统 C++课设

    #include<stdio.h> #include<stdlib.h> #include<string.h> #include<iostream> u ...

  9. python2.7安装pyinstaller

    python2.7直接安装pyinstaller会报错,版本4与python2不兼容,所以我们安装时需指定兼容的pyinstaller版本号.安装命令如下: pip2 install pyinstal ...

  10. springboot+maven实现模块化编程

    1.创建新项目repo-modele 2.右键Repo_modele -> New -> Module-->next 分别创建bs-web,bs-service,bs-entity, ...