通过 对 一个 数学 模型 的求解 来介绍 NLopt的使用方法

数学模型:

这个是目标函数 求满足 条件的情况下 x2的开平方最小

边界约束

非线性不等式约束如下

有两个参数 x1 和 x2 ,其中 a和b是模型的参数可以设为任意的固定值,这个模型设为a1=2,b1=0,a2=-1,b2=1

绘制这两条曲线 如下图

可行性区域在交汇的上方,最优点在交汇处,最优值大约为0.5443

下面通过NLopt的方式来求解这个数学模型。

通过图片上的曲线可以看出,x2>0的约束没有什么用,因为可行性区域的都在0之上

但是在使用NLopt的时候最好也把这个条件加上去。

nlopt.cc

#include <nlopt.hpp>
#include <iostream>
#include <math.h>
using namespace std;
int count = 0;
typedef struct {
double a, b;
} my_constraint_data;
double myfunc(const std::vector<double>& x, std::vector<double>& grad, void *my_func_data)
{ count++;
if(!grad.empty())
{
grad[0] = 0.0;
grad[1] = 0.5 / sqrt(x[1]);
}
return sqrt(x[1]);
} double myconstraint(const std::vector<double>& x, std::vector<double>& grad, void *data)
{
//声明对应外部数据刚定义的结构体 数据 然后赋值就可以了
my_constraint_data *d = (my_constraint_data *) data;
//获得a和b
double a = d->a, b = d->b;
if(!grad.empty())
{
grad[0] = 3 * a * (a*x[0] + b) * (a*x[0] + b);//对x0求偏导
grad[1] = -1.0;//对x1求偏导
}
return ((a*x[0] + b) * (a*x[0] + b) * (a*x[0] + b) - x[1]);//返回 不等函数
} int main()
{
my_constraint_data data[2] = { {2,0}, {-1,1} };//不等式的外部参数 上面定义的结构体
nlopt::opt opt(nlopt::LD_SLSQP, 2);
opt.set_min_objective(myfunc, NULL);
opt.add_inequality_constraint(myconstraint, &data[0], 1e-8);
opt.add_inequality_constraint(myconstraint, &data[1], 1e-8);
opt.set_xtol_rel(1e-4);
/*优化参数的边界约束*/
std::vector<double> lb {0.1,0.1};//注意参数的个数要对应上
std::vector<double> ub {10000,10000};//注意参数的个数要对应上
//设置 参数 边界
opt.set_lower_bounds(lb);//设置参数下限
opt.set_upper_bounds(ub);//设置参数上限 std::vector<double> x(2);
x[0] = 2.5;
x[1] = 4.3;
double minf; std::cout << "start optimize" << std::endl;
nlopt::result result = opt.optimize(x, minf);
std::cout << "count:" << count << endl;
std::cout << "found minimum at x1:" << x[0] << "x2:" << x[1] << "minf:" << minf << std::endl; return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8.3)
project(nloptDemo) find_package(Eigen3 REQUIRED) find_package(
nlopt
) include_directories(
${Eigen3_INCLUDE_DIRS}
${nlopt_INCLUDE_DIRS}
) link_directories(${nlopt_LIBARIES})
add_definitions(${nlopt_DEFINITIONS}) set(CMAKE_CXX_FLAGS "-std=c++11 ${CMAKE_CXX_FLAGS} -O0 -Wall") add_executable(nloptDemo nlopt.cc)
target_link_libraries( nloptDemo
${nlopt_LIBRARIES}
)

运行结果:

start optimize
count:9
found minimum at x1:0.333333x2:0.296296minf:0.544331

经过实验,发现初值对程序运行比较重要

非线性优化-NLopt的更多相关文章

  1. 非线性优化(高翔slam---第六讲 )

    1.线性最小二乘问题 2.非线性最小二乘问题 因为它非线性,所以df/dx有时候不好求,那么可以采用迭代法(有极值的话,那么它收敛,一步步逼近): 这样求导问题就变成了递归逼近问题,那么增量△xk如何 ...

  2. VINS(五)非线性优化与在线标定调整

    首先根据最大后验估计(Maximum a posteriori estimation,MAP)构建非线性优化的目标函数. 初始化过程通过线性求解直接会给出一个状态的初值,而非线性优化的过程关键在于求解 ...

  3. Ceres Solver: 高效的非线性优化库(二)实战篇

    Ceres Solver: 高效的非线性优化库(二)实战篇 接上篇: Ceres Solver: 高效的非线性优化库(一) 如何求导 Ceres Solver提供了一种自动求导的方案,上一篇我们已经看 ...

  4. Ceres Solver: 高效的非线性优化库(一)

    Ceres Solver: 高效的非线性优化库(一) 注:本文基于Ceres官方文档,大部分由英文翻译而来.可作为非官方参考文档. 简介 Ceres,原意是谷神星,是发现不久的一颗轨道在木星和火星之间 ...

  5. 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

    目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...

  6. SLAM中的非线性优化

    总结一下SLAM中关于非线性优化的知识. 先列出参考: http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9 ...

  7. nlopt 二次优化

    /* * main.c * * Created on: Oct 9, 2018 * Author: lgh */ #include <stdio.h> #include <math. ...

  8. R 包

    [下面列出每个步骤最有用的一些R包] .数据导入 以下R包主要用于数据导入和保存数据: feather:一种快速,轻量级的文件格式:在R和python上都可使用 readr:实现表格数据的快速导入 r ...

  9. R语言中常用包(二)

    数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Micro ...

  10. r语言 包说明

    [在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程.具体如下]   [下面列出每个步骤最有用的一些R包] 1.数据导入以下R包主要用于数据导入和保存数据:feather:一种快速,轻 ...

随机推荐

  1. Ian Lance Taylor

    https://img.mukewang.com/5a9dfda50001933e23006728.png 在GCC的世界中,没有人比Ian更火.在GCC maillist中,Ian的身影呈现在前端中 ...

  2. 第2-3-5章 删除附件的接口开发-文件存储服务系统-nginx/fastDFS/minio/阿里云oss/七牛云oss

    目录 5.4 接口开发-根据id删除附件 5.4.1 接口文档 5.4.2 代码实现 5.4.3 接口测试 5.4.4 测试ALI和FAST_DFS以及MINIO上传和删除的接口 5.4.4.1 阿里 ...

  3. 图文详解在VMware Workstation 16 PRO虚拟机上安装Rocky 8.6 linux系统

    一.安装VMware Workstation虚拟机 下载VMware Workstation 16 PRO虚拟机 https://www.vmware.com/cn/products/workstat ...

  4. 6个tips缓解第三方访问风险

    随着开发和交付的压力越来越大,许多企业选择依赖第三方来帮助运营和发展业务.值得重视的是,第三方软件及服务供应商和合作伙伴也是云环境攻击面的重要组成部分.尽管企业无法完全切断与第三方的关联,但可以在向他 ...

  5. MySQL数据库下载以及启动软件的详细步骤

    第一步>>>在浏览器上百度上搜索MySQL 如何判断官网?有官网两个字的或者纯英文解释的大概率就是官网 第二步>>>点击DOWNLOAWDS 第三步>> ...

  6. JavaScript笔记之面向对象

    面向对象 了解构造函数原型对象的语法特征,掌握 JavaScript 中面向对象编程的实现方式,基于面向对象编程思想实现 DOM 操作的封装. 了解面向对象编程的一般特征 掌握基于构造函数原型对象的逻 ...

  7. JUC源码学习笔记7——FutureTask源码解析,人生亦如是,run起来才有结果

    系列文章目录和关于我 一丶我们在哪里会使用到FutureTask 基本上工作中和Future接口 打交道比较多,比如线程池ThreadPoolExecutor#sumbit方法,返回值就是一个Futu ...

  8. day14-功能实现13

    家居网购项目实现013 以下皆为部分代码,详见 https://github.com/liyuelian/furniture_mall.git 32.功能30-会员不能登录后台管理 32.1需求分析/ ...

  9. HBase详解(05) - HBase优化 整合Phoenix 集成Hive

    HBase详解(05) - HBase优化 整合Phoenix 集成Hive HBase优化 预分区 每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维 ...

  10. 关系数据库——MySQL

    数据库 1.基本操作 1.1命令行操作 mysql -u username -p+password; --连接数据库 flush privileges; --刷新权限 show databases; ...