一、spark简介

Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架。

Spark是用Scala程序设计语言编写而成,运行于Java虚拟机(JVM)环境之上。目前支持如下程序设计语言编写Spark应用:Scala、Java、Python、Clojure、R。

1.1 重要概念

RDD:(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。

算子:spark中用来操作RDD的函数,主要分为transformation和action两类算子。transformation的特点就是lazy特性,只有当transformation之后,接着执行了一个action操作,那么所有的transformation才会执行

driver:运行spark程序,初始化SparkContext,划分RDD并初始DAGScheduler、TaskScheduler、SparkUI,发送task到executor

executor:运行task

task:运行在executor上,每个core一个task

job:通过action拆分,每个action算子会启动一个job

stage:通过宽窄依赖判断,如果存在宽依赖,会产生shuffle过程,划分两个stage

1.2 spark架构

Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的

Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。

Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据

MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。

GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作

二、RDD详解

2.1 RDD概念

RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集。

1、RDD在抽象上来说是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作。(分布式数据集)

2、RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建;有时也可以通过应用程序中的集合来创建。

3、RDD最重要的特性就是,提供了容错性,可以自动从节点失败中恢复过来。即如果某个节点上的RDD partition,因为节点故障,导致数据丢了,那么RDD会自动通过自己的数据来源重新计算该partition。这一切对使用者是透明的。

4、RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。(弹性)

2.2 RDD持久化

Spark非常重要的一个功能特性就是可以将RDD持久化在内存中。

当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition。

这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD。巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍。对于迭代式算法和快速交互式应用来说,RDD持久化,是非常重要的。

Spark自己也会在shuffle操作时,进行数据的持久化,比如写入磁盘,主要是为了在节点失败时,避免需要重新计算整个过程。

如何持久化

持久化一个RDD,只要调用其cache()或者persist()方法即可。

cache()和persist()的区别

cache()是persist()的一种简化方式,cache()的底层就是调用的persist()的无参版本,同时就是调用persist(MEMORY_ONLY),将数据持久化到内存中。如果需要从内存中清除缓存,那么可以使用unpersist()方法。

RDD持久化是可以手动选择不同的策略的。比如可以将RDD持久化在内存中、持久化到磁盘上、使用序列化的方式持久化,多持久化的数据进行多路复用。只要在调用persist()时传入对应的StorageLevel即可。

StorageLevel:

2.3 操作RDD

Spark通过算子操作RDD,支持transformation和action两类算子。

transformation操作会针对已有的RDD创建一个新的RDD;而action则主要是对RDD进行最后的操作,比如遍历、reduce、保存到文件等,并可以返回结果给Driver程序。例如,map就是一种transformation操作,它用于将已有RDD的每个元素传入一个自定义的函数,并获取一个新的元素,然后将所有的新元素组成一个新的RDD。而reduce就是一种action操作,它用于对RDD中的所有元素进行聚合操作,并获取一个最终的结果,然后返回给Driver程序。

2.3.1 transformation算子

transformation的特点就是lazy特性。lazy特性指的是,如果一个spark应用中只定义了transformation操作,那么即使你执行该应用,这些操作也不会执行。也就是说,transformation是不会触发spark程序的执行的,它们只是记录了对RDD所做的操作,但是不会自发的执行。只有当transformation之后,接着执行了一个action操作,那么所有的transformation才会执行。Spark通过这种lazy特性,来进行底层的spark应用执行的优化,避免产生过多中间结果。

算子 类型 作用 示例
map value 将原来 RDD 的每个数据项通过 map 中的用户自定义函数 f 映射转变为一个新的元素
flatMap  value 将原来 RDD 中的每个元素通过函数 f 转换为新的元素,并将生成的 RDD 的每个集合中的元素合并为一个集合  
mapPartitions  value

mapPartitions函数获取到每个分区的迭代器,在函数中通过这个分区整体的迭代器对整个分区的元素进行操作

glom  value glom函数将每个分区形成一个数组,内部实现是返回的GlommedRDD。 图4中的每个方框代表一个RDD分区。图4中的方框代表一个分区
union value  使用 union 函数时需要保证两个 RDD 元素的数据类型相同,返回的 RDD 数据类型和被合并的 RDD 元素数据类型相同,并不进行去重操作,保存所有元素。如果想去重可以使用 distinct()。
 
cartesian value  对两个RDD内的所有元素进行笛卡尔积操作。操作后,内部实现返回CartesianRDD。  
groupBy value  将元素通过函数生成相应的 Key,数据就转化为 Key-Value 格式,之后将 Key 相同的元素分为一组。  
 filter  value  filter 函数功能是对元素进行过滤,对每个 元 素 应 用 f 函 数, 返 回 值 为 true 的 元 素 在RDD 中保留,返回值为 false 的元素将被过滤掉。  
distinct  value distinct将RDD中的元素进行去重操作。  
subtract value  subtract相当于进行集合的差操作,RDD 1去除RDD 1和RDD 2交集中的所有元素。  
sample value  sample 将 RDD 这个集合内的元素进行采样,获取所有元素的子集。用户可以设定是否有放回的抽样、百分比、随机种子,进而决定采样方式。  
takeSample value akeSample()函数和上面的sample函数是一个原理,但是不使用相对比例采样,而是按设定的采样个数进行采样,同时返回结果不再是RDD,而是相当于对采样后的数据进行Collect(),返回结果的集合为单机的数组。
cache value cache 将 RDD 元素从磁盘缓存到内存。 相当于 persist(MEMORY_ONLY) 函数的功能。
persist value persist 函数对 RDD 进行缓存操作。数据缓存在哪里依据 StorageLevel 这个枚举类型进行确定。
mapValues key-value 针对(Key, Value)型数据中的 Value 进行 Map 操作,而不对 Key 进行处理。
combineByKey key-value 当于将元素为 (Int, Int) 的 RDD 转变为了 (Int, Seq[Int]) 类型元素的 RDD。
reduceByKey key-value reduceByKey 是比 combineByKey 更简单的一种情况,partitionBy两个值合并成一个值,( Int, Int V)to (Int, Int C),比如叠加。
partitionBy   partitionBy函数对RDD进行分区操作。
Cogroup  

cogroup函数将两个RDD进行协同划分,对在两个RDD中的Key-Value类型的元素,每个RDD相同Key的元素分别聚合为一个集合,并且返回两个RDD中对应Key的元素集合的迭代器。

join   join 对两个需要连接的 RDD 进行 cogroup函数操作,将相同 key 的数据能够放到一个分区,在 cogroup 操作之后形成的新 RDD 对每个key 下的元素进行笛卡尔积的操作,返回的结果再展平,对应 key 下的所有元组形成一个集合。
leftOutJoin和rightOutJoin   LeftOutJoin(左外连接)和RightOutJoin(右外连接)相当于在join的基础上先判断一侧的RDD元素是否为空,如果为空,则填充为空。 如果不为空,则将数据进行连接运算,并返回结果。  

2.3.2 action算子

action操作执行,会触发一个spark job的运行,从而触发这个action之前所有的transformation的执行。这是action的特性。

算子 作用 示例
foreach foreach 对 RDD 中的每个元素都应用 f 函数操作,不返回 RDD 和 Array, 而是返回Uint。  
saveAsTextFile 函数将数据输出,存储到 HDFS 的指定目录。
saveAsObjectFile saveAsObjectFile将分区中的每10个元素组成一个Array,然后将这个Array序列化,映射为(Null,BytesWritable(Y))的元素,写入HDFS为SequenceFile的格式。
collect collect 相当于 toArray, toArray 已经过时不推荐使用, collect 将分布式的 RDD 返回为一个单机的 scala Array 数组。在这个数组上运用 scala 的函数式操作。
collectAsMap collectAsMap对(K,V)型的RDD数据返回一个单机HashMap。 对于重复K的RDD元素,后面的元素覆盖前面的元素。
reduceByKeyLocally 实现的是先reduce再collectAsMap的功能,先对RDD的整体进行reduce操作,然后再收集所有结果返回为一个HashMap。
count count 返回整个 RDD 的元素个数。
top top可返回最大的k个元素。  
reduce reduce函数相当于对RDD中的元素进行reduceLeft函数的操作。
fold fold和reduce的原理相同,但是与reduce不同,相当于每个reduce时,迭代器取的第一个元素是zeroValue。
aggregate aggregate先对每个分区的所有元素进行aggregate操作,再对分区的结果进行fold操作。

三、spark运行原理

3.1 运行过程

1、编写自己的spark程序(application),拷贝到用来提交spark应用的机器上。然后用spark-submit提交程序到集群上。

2、启动driver进程,构造SparkContext对象,初始化DAGScheduler、TaskScheduler。构造完TaskScheduler之后,向Master发送请求注册Application。

3、Master使用自己的资源调度算法在多个Worker上启动多个Executor,Executor启动之后会反向注册到TaskScheduler上。

4、开始执行自己编写的代码,每次执行一个action操作就会触发一个job,DAGScheduler把每一个job划分成多个stage,每个stage创建一个TaskSet。

5、TaskScheduler将TaskSet提交到之前注册的Executor上,Executor每接收到一个task,都会有TaskRunner来封装task,然后从线程池里取出一个线程执行这个task。TaskRunner将我们编写的代码,也就是要执行的算子以及函数,拷贝、反序列化,然后执行task。

6、task分为两种,ShuffleMapTask和ResultTask,只有最后一个stage是ResultTask,之前的都是ShuffleMapTask。

7、所以,最后整个spark应用程序的执行就是stage分批次作为TaskSet提交到executor上执行,每个task针对RDD的一个partition执行我们定义的算子和函数。以此类推,直到所有的操作执行完毕。

3.2 SparkContext

spark程序提交后启动driver进程构造SparkContext

作用:初始化DAGScheduler、TaskScheduler、SparkUI

3.3 TaskScheduler

作用:master启动executor后反向注册到TaskScheduler,然后TaskScheduler将TaskSet提交到注册的Executor上

3.4 DAGScheduler

作用:负责将job划分为多个stage,划分stage主要看宽窄依赖,如果是宽依赖,会产生shuffle,必定会划分stage,等上一步完成计算才能开始下一步。每个stage创建一个TaskSet。

3.4.1 窄依赖(narrow dependency)

窄依赖是指1个父RDD分区对应1个子RDD的分区。换句话说,一个父RDD的分区对应于一个子RDD的分区,或者多个父RDD的分区对应于一个子RDD的分区。

窄依赖分为两种情况:

1个子RDD的分区对应于1个父RDD的分区,比如map,filter,union等算子。

1个子RDD的分区对应于N个父RDD的分区,比如co-partioned join。

3.4.2 宽依赖(shuffle dependency)

宽依赖是指1个父RDD分区对应多个子RDD分区。宽依赖会产生shuffle

宽依赖分为两种情况。

1个父RDD对应非全部多个子RDD分区,比如groupByKey,reduceByKey,sortByKey

1个父RDD对应所有子RDD分区,比如未经协同划分的join

四、性能调优

1、基础篇

1、避免创建重复的RDD,复用同一份RDD。必要时可以持久RDD,如果选择内存持久化需要注意内存大小,以免内存溢出或占用计算内存。

2、尽量避免使用shuffle类算子。reduceByKey、join、distinct、repartition等会进行shuffle的算子。一定要使用shuffle操作,无法用map类的算子来替代,那么尽量使用可以map-side预聚合的算子。

3、使用高性能的算子

a)使用reduceByKey/aggregateByKey替代groupByKey,使用map-side预聚合的shuffle操作。

b)使用mapPartitions替代普通map。mapPartitions类的算子,一次函数调用会处理一个partition所有的数据,而不是一次函数调用处理一条,性能相对来说会高一些。但是有的时候,使用mapPartitions会出现OOM(内存溢出)的问题。因为单次函数调用就要处理掉一个partition所有的数据,如果内存不够,垃圾回收时是无法回收掉太多对象的,很可能出现OOM异常。所以使用这类操作时要慎重!

c)使用foreachPartitions替代foreach。原理类似于“使用mapPartitions替代map”。

d)使用filter之后进行coalesce操作。通常对一个RDD执行filter算子过滤掉RDD中较多数据后(比如30%以上的数据),建议使用coalesce算子,手动减少RDD的partition数量,将RDD中的数据压缩到更少的partition中去。

e)使用repartitionAndSortWithinPartitions替代repartition与sort类操作

4、广播大变量,广播小表

2、数据倾斜

现象:大多数task执行得都非常快,但个别task执行极慢。比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时。

数据倾斜发生的原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。

因此出现数据倾斜的时候,Spark作业看起来会运行得非常缓慢,甚至可能因为某个task处理的数据量过大导致内存溢出。

下图就是一个很清晰的例子:hello这个key,在三个节点上对应了总共7条数据,这些数据都会被拉取到同一个task中进行处理;而world和you这两个key分别才对应1条数据,所以另外两个task只要分别处理1条数据即可。此时第一个task的运行时间可能是另外两个task的7倍,而整个stage的运行速度也由运行最慢的那个task所决定。

解决方案:

1)使用hive ETL预聚合

方案适用场景:导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

方案实现原理:这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。

方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。

方案缺点:治标不治本,Hive ETL中还是会发生数据倾斜。

2)过滤少数导致倾斜的key

方案适用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

方案实现思路:如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。

方案实现原理:将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

方案优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。

方案缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。

3)提高shuffle操作的并行度

方案适用场景:如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。

方案实现思路:在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小。

方案实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。具体原理如下图所示。

方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。

方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。

4)将reduce join转为map join

方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

方案实现思路:不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。

方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示。

方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。

方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。

5)两阶段聚合(局部聚合+全局聚合)

方案适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

方案实现思路:这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

方案实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。

方案优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

方案缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

6)采样倾斜key并分拆join操作

方案适用场景:两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。

方案实现思路: * 对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。 * 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。 * 接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。 * 再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。 * 而另外两个普通的RDD就照常join即可。 * 最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。

方案实现原理:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。具体原理见下图。

方案优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。

方案缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。

7)使用随机前缀和扩容RDD进行join

方案适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。

方案实现思路: * 该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。 * 然后将该RDD的每条数据都打上一个n以内的随机前缀。 * 同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。 * 最后将两个处理后的RDD进行join即可。

方案实现原理:将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

方案优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。

方案缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。

8)多种方案组合使用

在实践中发现,很多情况下,如果只是处理较为简单的数据倾斜场景,那么使用上述方案中的某一种基本就可以解决。但是如果要处理一个较为复杂的数据倾斜场景,那么可能需要将多种方案组合起来使用。比如说,我们针对出现了多个数据倾斜环节的Spark作业,可以先运用解决方案一和二,预处理一部分数据,并过滤一部分数据来缓解;其次可以对某些shuffle操作提升并行度,优化其性能;最后还可以针对不同的聚合或join操作,选择一种方案来优化其性能。大家需要对这些方案的思路和原理都透彻理解之后,在实践中根据各种不同的情况,灵活运用多种方案,来解决自己的数据倾斜问题。

3、参数调优

基础参数

a)num-executors

  • 参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
  • 参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。

b)executor-memory

  • 参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
  • 参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。

c)executor-cores

  • 参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
  • 参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。

d)driver-memory

  • 参数说明:该参数用于设置Driver进程的内存。
  • 参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

e)spark.default.parallelism

  • 参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
  • 参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

f)spark.storage.memoryFraction

  • 参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
  • 参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

g)spark.shuffle.memoryFraction

  • 参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
  • 参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

shuffle相关参数

a)spark.shuffle.file.buffer

  • 默认值:32k
  • 参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
  • 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

b)spark.reducer.maxSizeInFlight

  • 默认值:48m
  • 参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
  • 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

c)spark.shuffle.io.maxRetries

  • 默认值:3
  • 参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
  • 调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。

d)spark.shuffle.io.retryWait

  • 默认值:5s
  • 参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
  • 调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。

e)spark.shuffle.memoryFraction

  • 默认值:0.2
  • 参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
  • 调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。

f)spark.shuffle.manager

  • 默认值:sort
  • 参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
  • 调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。

g)spark.shuffle.sort.bypassMergeThreshold

  • 默认值:200
  • 参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
  • 调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

h)spark.shuffle.consolidateFiles

  • 默认值:false
  • 参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
  • 调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。

Spark之详解及性能优化的更多相关文章

  1. 详解MySQL性能优化(二)

    http://www.jb51.net/article/70530.htm 七.MySQL数据库Schema设计的性能优化高效的模型设计 适度冗余-让Query尽两减少Join 大字段垂直分拆-sum ...

  2. JVM虚拟机详解+Tomcat性能优化

    1.JVM(java virtual mechinal) ()JVM有完善的硬件架构,如处理器.堆栈.寄存器当,还具有相应的指令系统. ()JVM的主要工作时解释自己的指令集(即字节码),并映射到本地 ...

  3. MapReduce过程详解及其性能优化

    http://blog.csdn.net/aijiudu/article/details/72353510 废话不说直接来一张图如下: 从JVM的角度看Map和Reduce Map阶段包括: 第一读数 ...

  4. 高手详解SQL性能优化十条经验

    1.查询的模糊匹配 尽量避免在一个复杂查询里面使用 LIKE '%parm1%'—— 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用. 解决办法: 其实只需要对该脚本略做改进,查询速度便会 ...

  5. 高手详解SQL性能优化十条建议

    1.查询的模糊匹配  尽量避免在一个复杂查询里面使用 LIKE '%parm1%'—— 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用. 解决办法: 其实只需要对该脚本略做改进,查询速度便 ...

  6. MYSQL ini 配置文件详解及性能优化方案

    my.ini分为两块:Client Section和Server Section.   Client Section用来配置MySQL客户端参数.   要查看配置参数可以用下面的命令: show va ...

  7. HBase详解(05) - HBase优化 整合Phoenix 集成Hive

    HBase详解(05) - HBase优化 整合Phoenix 集成Hive HBase优化 预分区 每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维 ...

  8. Oracle Statspack报告中各项指标含义详解~~学习性能必看!!!

    Oracle Statspack报告中各项指标含义详解~~学习性能必看!!! Data Buffer Hit Ratio#<#90# 数据块在数据缓冲区中的命中率,通常应该在90%以上,否则考虑 ...

  9. Spark参数详解 一(Spark1.6)

    Spark参数详解 (Spark1.6) 参考文档:Spark官网 在Spark的web UI在"Environment"选项卡中列出Spark属性.这是一个很有用的地方,可以检查 ...

  10. Java性能分析之线程栈详解与性能分析

    Java性能分析之线程栈详解 Java性能分析迈不过去的一个关键点是线程栈,新的性能班级也讲到了JVM这一块,所以本篇文章对线程栈进行基础知识普及以及如何对线程栈进行性能分析. 基本概念 线程堆栈也称 ...

随机推荐

  1. ubuntu 安装php7.2 oracle扩展

    一:介绍 php要连接访问oracle需要安装三个东西 1:Oracle Instant Client:即时客户端库 2:php的Oracle数据库扩展:oci8 3:php连接pdo的oci扩展:p ...

  2. RabbitMQ-01-使用Java进行简单消息发送与接收

    前言 这里使用手动管理jar与使用Maven管理jar两种方式,分别演示消息的发送和接收. 手动管理jar实现消息发送与接收 添加jar amqp-client-5.7.1.jar slf4j-api ...

  3. kubernetes 集群部署问题点统计

    1.安装网络插件报错 error unable to recognize "calico.yaml": no matches for kind "DaemonSet&qu ...

  4. CentOS下下查看硬盘型号、大小等信息(含Raid)

    一.普通模式(该机硬盘没有做磁盘阵列) 1.fdisk -l 查看你的硬盘编号,如sda,sdb 等 2.smartctl --all /dev/sda [html] view plain copy ...

  5. Selenium无浏览器页面执行测试用例—静默执行

    在执行WebUI自动化用例的时候,经常需要不打开浏览器执行自动化测试,这时就需要用到浏览器的静默执行.浏览器静默执行要点:1.定义Chrome的选项,两种方式任选 chrome_options = w ...

  6. mxArray 和 mwArray 的区别

    首先,mxArray是MatlabC 函数库的结构体,而mwArray是Matlab C++ 函数库中对mxArray的包装 类. 其次,二者的内存管理方式不同.mxArray的内存管理方式比较松散, ...

  7. web.py 中的分页设计

    1.定义分页类 class Pagination(object): ''' 分页类 参数: per_page:每页数量 total_data:总数目 cur_page:当前页. 用法:(flask,h ...

  8. Neuropsychological Assessment 5th

    书本详情 Neuropsychological Assessment作者: Muriel Deutsch Lezak / Diane B. Howieson / Erin D. Bigler / Da ...

  9. 关于.bashrc文件

    文件作用 存储临时变量 注意 每个user都有自己的.bashrc文件,root用户也有. 普通用户在"/home/username/"目录下 root在"/root&q ...

  10. 如何用python将txt中的package批量安装

    第一步:cd 到目标路径 第二步:新建一个requirement.txt文档,将所有要下载的包一一罗列出来(需要指定版本的话,可以用==表明) 第三步:输入命令  pip install -r req ...