1. 引言

本文基于C++语言,描述OpenGL的多光源

前置知识可参考:

笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:

2. 概述

生活中,光源往往是不止一个的,通常是多个光源同时出现

3. 编码

使用多个光源时,将光照计算代码全写在片段着色器的main函数里,不利于代码的编写与阅读

在这里,将多个光照封装为GLSL中的函数

平行光照函数:

struct DirLight {
vec3 direction; vec3 ambient;
vec3 diffuse;
vec3 specular;
}; uniform DirLight dirLight; vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir); void main()
{
...
} vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir)
{
vec3 lightDir = normalize(-light.direction);
// 漫反射着色
float diff = max(dot(normal, lightDir), 0.0);
// 镜面光着色
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// 合并结果
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
return (ambient + diffuse + specular);
}

点光照函数:

struct PointLight {
vec3 position; float constant;
float linear;
float quadratic; vec3 ambient;
vec3 diffuse;
vec3 specular;
};
#define NR_POINT_LIGHTS 4
uniform PointLight pointLights[NR_POINT_LIGHTS]; // 定义四个点光源 vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir); void main()
{
...
} vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
vec3 lightDir = normalize(light.position - fragPos);
// 漫反射着色
float diff = max(dot(normal, lightDir), 0.0);
// 镜面光着色
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// 衰减
float distance = length(light.position - fragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance +
light.quadratic * (distance * distance));
// 合并结果
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
ambient *= attenuation;
diffuse *= attenuation;
specular *= attenuation;
return (ambient + diffuse + specular);
}

合并光照:

void main()
{
// 属性
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(viewPos - FragPos); // 第一阶段:定向光照
vec3 result = CalcDirLight(dirLight, norm, viewDir);
// 第二阶段:点光源
for(int i = 0; i < NR_POINT_LIGHTS; i++)
result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);
// 第三阶段:聚光
//result += CalcSpotLight(spotLight, norm, FragPos, viewDir); FragColor = vec4(result, 1.0);
}

向GPU传输数据:

// positions of the point lights
glm::vec3 pointLightPositions[] = {
glm::vec3( 0.7f, 0.2f, 2.0f),
glm::vec3( 2.3f, -3.3f, -4.0f),
glm::vec3(-4.0f, 2.0f, -12.0f),
glm::vec3( 0.0f, 0.0f, -3.0f)
};
...
// directional light
lightingShader.setVec3("dirLight.direction", -0.2f, -1.0f, -0.3f);
lightingShader.setVec3("dirLight.ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("dirLight.diffuse", 0.4f, 0.4f, 0.4f);
lightingShader.setVec3("dirLight.specular", 0.5f, 0.5f, 0.5f);
// point light 1
lightingShader.setVec3("pointLights[0].position", pointLightPositions[0]);
lightingShader.setVec3("pointLights[0].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[0].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[0].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[0].constant", 1.0f);
lightingShader.setFloat("pointLights[0].linear", 0.09f);
lightingShader.setFloat("pointLights[0].quadratic", 0.032f);
// point light 2
lightingShader.setVec3("pointLights[1].position", pointLightPositions[1]);
lightingShader.setVec3("pointLights[1].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[1].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[1].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[1].constant", 1.0f);
lightingShader.setFloat("pointLights[1].linear", 0.09f);
lightingShader.setFloat("pointLights[1].quadratic", 0.032f);
// point light 3
lightingShader.setVec3("pointLights[2].position", pointLightPositions[2]);
lightingShader.setVec3("pointLights[2].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[2].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[2].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[2].constant", 1.0f);
lightingShader.setFloat("pointLights[2].linear", 0.09f);
lightingShader.setFloat("pointLights[2].quadratic", 0.032f);
// point light 4
lightingShader.setVec3("pointLights[3].position", pointLightPositions[3]);
lightingShader.setVec3("pointLights[3].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[3].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[3].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[3].constant", 1.0f);
lightingShader.setFloat("pointLights[3].linear", 0.09f);
lightingShader.setFloat("pointLights[3].quadratic", 0.032f);
// spotLight
lightingShader.setVec3("spotLight.position", camera.Position);
lightingShader.setVec3("spotLight.direction", camera.Front);
lightingShader.setVec3("spotLight.ambient", 0.0f, 0.0f, 0.0f);
lightingShader.setVec3("spotLight.diffuse", 1.0f, 1.0f, 1.0f);
lightingShader.setVec3("spotLight.specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("spotLight.constant", 1.0f);
lightingShader.setFloat("spotLight.linear", 0.09f);
lightingShader.setFloat("spotLight.quadratic", 0.032f);
lightingShader.setFloat("spotLight.cutOff", glm::cos(glm::radians(12.5f)));
lightingShader.setFloat("spotLight.outerCutOff", glm::cos(glm::radians(15.0f)));

结果图如下:

4. 完整代码

主要文件MultipleLights.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <math.h>
#include "Shader.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale
#include <glm/ext/matrix_clip_space.hpp> // glm::perspective
#include <glm/gtc/type_ptr.hpp> //全局变量
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 lightPos(0.8f, 1.0f, 2.0f); // 函数声明
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void process_input(GLFWwindow *window); int main()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow *window = glfwCreateWindow(800, 600, "MultipleLights", nullptr, nullptr); if (window == nullptr)
{
std::cout << "Faild to create window" << std::endl;
glfwTerminate();
}
glfwMakeContextCurrent(window); if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Faild to initialize glad" << std::endl;
return -1;
}
glad_glViewport(0, 0, 800, 600);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); //配置项
glEnable(GL_DEPTH_TEST); Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl");
Shader lightingShader("../cube.vs.glsl", "../cube.fs.glsl"); unsigned int cubeVAO;
glGenVertexArrays(1, &cubeVAO);
glBindVertexArray(cubeVAO); float vertices[] = {
// positions // normals // texture coords
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f
};
unsigned int VBO;
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)(3*sizeof(float)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)(6*sizeof(float)));
glEnableVertexAttribArray(2); // 纹理
unsigned int texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
int width, height, nrChannels;
unsigned char *data = stbi_load("../container2.png", &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
}
else
{
std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data);
lightingShader.setInt("material.diffuse", 0); // 镜面反射纹理
unsigned int texture1;
glGenTextures(1, &texture1);
glBindTexture(GL_TEXTURE_2D, texture1);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
data = stbi_load("../container2_specular.png", &width, &height, &nrChannels, 0);
if (data)
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
}
else
{
std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data);
lightingShader.setInt("material.diffuse", 1); unsigned int lightCubeVAO;
glGenVertexArrays(1, &lightCubeVAO);
glBindVertexArray(lightCubeVAO);
// 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0); // positions all containers
glm::vec3 cubePositions[] = {
glm::vec3( 0.0f, 0.0f, 0.0f),
glm::vec3( 2.0f, 5.0f, -15.0f),
glm::vec3(-1.5f, -2.2f, -2.5f),
glm::vec3(-3.8f, -2.0f, -12.3f),
glm::vec3( 2.4f, -0.4f, -3.5f),
glm::vec3(-1.7f, 3.0f, -7.5f),
glm::vec3( 1.3f, -2.0f, -2.5f),
glm::vec3( 1.5f, 2.0f, -2.5f),
glm::vec3( 1.5f, 0.2f, -1.5f),
glm::vec3(-1.3f, 1.0f, -1.5f)
}; // positions of the point lights
glm::vec3 pointLightPositions[] = {
glm::vec3( 0.7f, 0.2f, 2.0f),
glm::vec3( 2.3f, -3.3f, -4.0f),
glm::vec3(-4.0f, 2.0f, -12.0f),
glm::vec3( 0.0f, 0.0f, -3.0f)
};
while (!glfwWindowShouldClose(window))
{
process_input(window); glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texture1); lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
lightingShader.setVec3("lightPos", lightPos);
lightingShader.setVec3("viewPos", cameraPos);
lightingShader.setFloat("material.shininess", 32.0f); // directional light
lightingShader.setVec3("dirLight.direction", -0.2f, -1.0f, -0.3f);
lightingShader.setVec3("dirLight.ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("dirLight.diffuse", 0.4f, 0.4f, 0.4f);
lightingShader.setVec3("dirLight.specular", 0.5f, 0.5f, 0.5f);
// point light 1
lightingShader.setVec3("pointLights[0].position", pointLightPositions[0]);
lightingShader.setVec3("pointLights[0].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[0].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[0].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[0].constant", 1.0f);
lightingShader.setFloat("pointLights[0].linear", 0.09f);
lightingShader.setFloat("pointLights[0].quadratic", 0.032f);
// point light 2
lightingShader.setVec3("pointLights[1].position", pointLightPositions[1]);
lightingShader.setVec3("pointLights[1].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[1].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[1].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[1].constant", 1.0f);
lightingShader.setFloat("pointLights[1].linear", 0.09f);
lightingShader.setFloat("pointLights[1].quadratic", 0.032f);
// point light 3
lightingShader.setVec3("pointLights[2].position", pointLightPositions[2]);
lightingShader.setVec3("pointLights[2].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[2].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[2].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[2].constant", 1.0f);
lightingShader.setFloat("pointLights[2].linear", 0.09f);
lightingShader.setFloat("pointLights[2].quadratic", 0.032f);
// point light 4
lightingShader.setVec3("pointLights[3].position", pointLightPositions[3]);
lightingShader.setVec3("pointLights[3].ambient", 0.05f, 0.05f, 0.05f);
lightingShader.setVec3("pointLights[3].diffuse", 0.8f, 0.8f, 0.8f);
lightingShader.setVec3("pointLights[3].specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("pointLights[3].constant", 1.0f);
lightingShader.setFloat("pointLights[3].linear", 0.09f);
lightingShader.setFloat("pointLights[3].quadratic", 0.032f);
// spotLight
lightingShader.setVec3("spotLight.position", cameraPos);
lightingShader.setVec3("spotLight.direction", cameraFront);
lightingShader.setVec3("spotLight.ambient", 0.0f, 0.0f, 0.0f);
lightingShader.setVec3("spotLight.diffuse", 1.0f, 1.0f, 1.0f);
lightingShader.setVec3("spotLight.specular", 1.0f, 1.0f, 1.0f);
lightingShader.setFloat("spotLight.constant", 1.0f);
lightingShader.setFloat("spotLight.linear", 0.09f);
lightingShader.setFloat("spotLight.quadratic", 0.032f);
lightingShader.setFloat("spotLight.cutOff", glm::cos(glm::radians(12.5f)));
lightingShader.setFloat("spotLight.outerCutOff", glm::cos(glm::radians(15.0f))); glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f)); glm::mat4 view = glm::mat4(1.0f);
// view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp); glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f); // 模型矩阵
int modelLoc = glGetUniformLocation(lightingShader.ID, "model");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// 观察矩阵和投影矩阵与之类似
int viewLoc = glGetUniformLocation(lightingShader.ID, "view");
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection");
glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection)); // render the cube
glBindVertexArray(cubeVAO);
// glDrawArrays(GL_TRIANGLES, 0, 36);
for (unsigned int i = 0; i < 10; i++)
{
// calculate the model matrix for each object and pass it to shader before drawing
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, cubePositions[i]);
float angle = 20.0f * i;
model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
lightingShader.setMat4("model", model); glDrawArrays(GL_TRIANGLES, 0, 36);
} // also draw the lamp object
// lightCubeShader.use();
// lightCubeShader.setMat4("projection", projection);
// lightCubeShader.setMat4("view", view);
// model = glm::mat4(1.0f);
// model = glm::translate(model, lightPos);
// model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
// lightCubeShader.setMat4("model", model); // glBindVertexArray(lightCubeVAO);
// glDrawArrays(GL_TRIANGLES, 0, 36); // also draw the lamp object(s)
lightCubeShader.use();
lightCubeShader.setMat4("projection", projection);
lightCubeShader.setMat4("view", view); // we now draw as many light bulbs as we have point lights.
glBindVertexArray(lightCubeVAO);
for (unsigned int i = 0; i < 4; i++)
{
model = glm::mat4(1.0f);
model = glm::translate(model, pointLightPositions[i]);
model = glm::scale(model, glm::vec3(0.2f)); // Make it a smaller cube
lightCubeShader.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
} glfwSwapBuffers(window);
glfwPollEvents();
} glfwTerminate();
return 0;
} void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{
glViewport(0, 0, width, height);
} void process_input(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, true);
}
float cameraSpeed = 0.05f; // adjust accordingly
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

立方体顶点着色器GLSLcube.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords; out vec3 Normal;
out vec3 FragPos;
out vec2 TexCoords; uniform mat4 model;
uniform mat4 view;
uniform mat4 projection; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
FragPos = vec3(model * vec4(aPos, 1.0));
Normal = aNormal;
TexCoords = aTexCoords;
}

立方体片段着色器GLSLcube.fs.glsl

#version 330 core
struct Material {
sampler2D diffuse;
sampler2D specular;
float shininess;
};
struct DirLight {
vec3 direction; vec3 ambient;
vec3 diffuse;
vec3 specular;
}; uniform DirLight dirLight; vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir); struct PointLight {
vec3 position; float constant;
float linear;
float quadratic; vec3 ambient;
vec3 diffuse;
vec3 specular;
};
#define NR_POINT_LIGHTS 4
uniform PointLight pointLights[NR_POINT_LIGHTS]; // 定义四个点光源 vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir); in vec3 Normal;
in vec3 FragPos;
in vec2 TexCoords; out vec4 FragColor; uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos;
uniform Material material; void main()
{
// 属性
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(viewPos - FragPos); // 第一阶段:定向光照
vec3 result = CalcDirLight(dirLight, norm, viewDir);
// 第二阶段:点光源
for(int i = 0; i < NR_POINT_LIGHTS; i++)
result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);
// 第三阶段:聚光
//result += CalcSpotLight(spotLight, norm, FragPos, viewDir); FragColor = vec4(result, 1.0);
} vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir)
{
vec3 lightDir = normalize(-light.direction);
// 漫反射着色
float diff = max(dot(normal, lightDir), 0.0);
// 镜面光着色
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// 合并结果
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
return (ambient + diffuse + specular);
} vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
vec3 lightDir = normalize(light.position - fragPos);
// 漫反射着色
float diff = max(dot(normal, lightDir), 0.0);
// 镜面光着色
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// 衰减
float distance = length(light.position - fragPos);
float attenuation = 1.0 / (light.constant + light.linear * distance +
light.quadratic * (distance * distance));
// 合并结果
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
ambient *= attenuation;
diffuse *= attenuation;
specular *= attenuation;
return (ambient + diffuse + specular);
}

着色器Shader.hpp、光源顶点着色器GLSLlight_cube.vs.glsl、光源片段着色器GLSLlight_cube.fs.glsl见:

5. 参考资料

[1]多光源 - LearnOpenGL CN (learnopengl-cn.github.io)

基于C++的OpenGL 12 之多光源的更多相关文章

  1. 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)

    在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...

  2. 基于Cocos2d-x学习OpenGL ES 2.0之多纹理

    没想到原文出了那么多错别字,实在对不起观众了.介绍opengl es 2.0的不多.相信介绍基于Cocos2d-x学习OpenGL ES 2.0之多纹理的,我是独此一家吧.~~ 子龙山人出了一个系列: ...

  3. 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)

    在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...

  4. 【游戏开发】基于VS2017的OpenGL开发环境搭建

    一.简介 最近,马三买了两本有关于“计算机图形学”的书籍,准备在工作之余鼓捣鼓捣图形学和OpenGL编程,提升自己的价值(奔着学完能涨一波工资去的).俗话说得好,“工欲善其事,必先利其器”.想学习图形 ...

  5. OpenGL光照3:光源

    本文是个人学习记录,学习建议看教程 https://learnopengl-cn.github.io/ 非常感谢原作者JoeyDeVries和多为中文翻译者提供的优质教程 的内容为插入注释,可以先跳过 ...

  6. 1、基于MFC的OpenGL程序

    首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   工程openGLMFC 1.创建单文本文件   2.添加路径.链接 方法如之前篇章所示, 链接库为op ...

  7. 基于MFC的OpenGL程序<转>

    原贴地址:https://www.cnblogs.com/pinking/p/6180225.html 首先,使用的库是GLUT以及GLAUX,先下载两者,添加查找路径以及链接   一.单文本文件   ...

  8. 基于Cocos2d-x学习OpenGL ES 2.0系列——你的第一个立方体(5)

    在上篇文章中,我们介绍了VBO索引的使用,使用VBO索引可以有效地减少顶点个数,优化内存,提高程序效率. 本教程将带领大家一起走进3D--绘制一个立方体.其实画立方体本质上和画三角形没什么区别,所有的 ...

  9. 基于对话框的Opengl框架

    转自:http://blog.csdn.net/longxiaoshi/article/details/8238933 12-11-29 14:55 1198人阅读 评论(6) 收藏 举报  分类: ...

  10. 基于Cocos2d-x学习OpenGL ES 2.0系列——编写自己的shader(2)

    在上篇文章中,我给大家介绍了如何在Cocos2d-x里面绘制一个三角形,当时我们使用的是Cocos2d-x引擎自带的shader和一些辅助函数.在本文中,我将演示一下如何编写自己的shader,同时, ...

随机推荐

  1. 【离线数仓】Day02-用户行为数据仓库:分层介绍、环境搭建(hive、tez)、LZO压缩、建表查询导入加索引、编写脚本

    一.数仓分层概念 1.为什么要分层 ODS:原始数据层 DWD层:明细数据层 DWS:服务数据层 ADS:数据应用层 2.数仓分层 3.数据集市与数据仓库概念 4.数仓命名规范 ODS层命名为odsD ...

  2. python自然语言处理(NLP)1------中文分词1,基于规则的中文分词方法

    python中文分词方法之基于规则的中文分词 目录 常见中文分词方法 推荐中文分词工具 参考链接 一.四种常见的中文分词方法: 基于规则的中文分词 基于统计的中文分词 深度学习中文分词 混合分词方法 ...

  3. Python编程规范之PEP8

    Python编程规范-PEP8 PEP是 Python Enhancement Proposal 的缩写. 英文链接: https://legacy.python.org/dev/peps/pep-0 ...

  4. angr_ctf——从0学习angr(二):状态操作和约束求解

    状态操作 angr中提到的状态(state)实际上是一个Simstate类,该类可由Project预设得到.预设完成后,还可以根据需要对某些部分进行细化操作. 一个state包含了程序运行到某个阶段时 ...

  5. Django框架模板语法传值-过滤器-标签-自定义过滤器,标签,inclusion_tag

    目录 一:模版语法传值 1.模板语法两个书写方式 2.模板语法 3.测试模板语法是否可以把python支持的基本数据类型传入到前端 4.index.html 5.django模板语法取值方式 二:过滤 ...

  6. js 非空判断

    是否为 null 是否为 "" 是否为空字符串(引号中间有空格)  如: "     ". 制表符.换行符.换页符和回车 一. 字符串 1. if(str == ...

  7. 基于.NetCore开发博客项目 StarBlog - (25) 图片接口与文件上传

    前言 上传文件的接口设计有两种风格,一种是整个项目只设置一个接口用来上传,然后其他需要用到文件的地方,都只存一个引用ID:另一种是每个需要文件的地方单独管理各自的文件.这俩各有优劣吧,本项目中选择的是 ...

  8. JavaScript:函数:函数传参传的是什么?值传递还是引用传递?

    我们调用函数的时候,把实参放入到括号里进行传参,让形参接收实参的数据. 在这个过程中,形参接收的数据到底是什么,换句话说,我们传参传的到底是什么东西? 初学JS的,可能不太难理解这个问题的意义是什么? ...

  9. 详解 Gulp4 和 Gulp3 的区别

    最近在开发几个网站,为了优化一下前端代码,就复习一下gulpjs,之前工作gulp用的版本比较老,但是今天看了新的版本,新的语法出了一下,但是为了时间,我决定使用之前gulp3的旧版本,后面发现自己环 ...

  10. C# 线程查漏补缺

    进程和线程 不同程序执行需要进行调度和独立的内存空间 在单核计算机中,CPU 是独占的,内存是共享的,这时候运行一个程序的时候是没有问题.但是运行多个程序的时候,为了不发生一个程序霸占整个 CPU 不 ...