【实时数仓】Day04-DWS层业务:DWS设计、访客宽表、商品主题宽表、流合并、地区主题表、FlinkSQL、关键词主题表、分词
一、DWS层与DWM设计
1、思路
之前已经进行分流
但只需要一些指标进行实时计算,将这些指标以主题宽表的形式输出
2、需求
访客、商品、地区、关键词四层的需求(可视化大屏展示、多维分析)
3、DWS层定位
轻度聚合、主题中管理
二、DWS层-访客主题宽表的计算
DWS表主要包含维度表和事实表
维度表主要包括渠道、地区、版本、新老用户等
事实表主要包括PV、UV、跳出次数、进入页面数(session_count)、连续访问时长等
1、需求分析
合并接收到的数据流,按时间窗口聚合,并将聚合结果写入数据库
2、实现
(1)读取kafka各个流的数据
page_log、dwm_uv、dwm_jump_user跳出用户
(2)合并读取到的数据流
使用union合并两个结构相同的数据流
需要提前调整数据结构封装主题宽表实体类(两个待合并的流也都要是这样的结构)
userJumpDStream.map实现转换
合并4条输入的流:
uniqueVisitStatsDstream.union(
pageViewStatsDstream,
sessionVisitDstream,
userJumpStatDstream
);
(3)根据维度进行聚合
设置时间标记及水位线
4个维度作为key,使用tuple4组合,进行分组,.keyBy(new KeySelector
reduce窗口内聚合,并补充时间字段
(4)写入OLAP数据库ClickHouse
专门解决大量数据统计分析的数据库,在保证了海量数据存储的能力,同时又兼顾了响应速度
先建表,使用 ReplacingMergeTree 引擎来保证幂等性
将日期变为数字作为分区类型
编写ClickhouseUtils工具类
创建 TransientSink 注解,标记不需要保存的字段
配置连接地址类,并增加写入OLAP的sink
查看控制台输出及表中数据 visitor_stats_2021
三、商品主题宽表
把多个事实表的明细数据汇总起来组合成宽表
1、需求及思路
获取数据流并转换为统一的数据对象格式
将统一数据结构合并为一个流
设定事件时间与水位线,分组、开窗、聚合
关联维度表补充数据
写入ClickHouse
2、功能实现
建商品统计实体类(各种业务数据的统计),并给必要字段添加@Builder.Default注解,各类添加@Builder注解(构造方法)
kafka中获取指定的流:FlinkKafkaConsumer<String> pageViewSource = MyKafkaUtil.getKafkaSource(pageViewSourceTopic,groupId);
对各种流数据进行结构转换,转换为构建的实体类
创建电商业务常量类 GmallConstant,类似维度表,用一个数字表示一个字符串
将统一的数据结构合并为一个流
设定事件时间与水位线
按商品id分组,10秒的窗口进行开窗window(TumblingEventTimeWindows.of(Time.seconds(10)))
补充商品维度、SKU维度、品类维度、品牌维度等信息
SingleOutputStreamOperator<ProductStats> productStatsWithTmDstream =
AsyncDataStream.unorderedWait(productStatsWithCategory3Dstream,
new DimAsyncFunction<ProductStats>("DIM_BASE_TRADEMARK") {
@Override
public void join(ProductStats productStats, JSONObject jsonObject) throws
Exception {
productStats.setTm_name(jsonObject.getString("TM_NAME"));
}
@Override
public String getKey(ProductStats productStats) {
return String.valueOf(productStats.getTm_id());
}
}, 60, TimeUnit.SECONDS);
productStatsWithTmDstream.print("to save");
ClickHouse中创建商品主题宽表,添加写入ch的sink
//TODO 7.写入到 ClickHouse
productStatsWithTmDstream.addSink(
ClickHouseUtil.<ProductStats>getJdbcSink(
"insert into product_stats_2021 values(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)"));
查看ClickHouse表中的数据
四、地区主题表(Flink SQL)
1、需求分析
定义 Table 流环境,把数据源定义为动态表
通过 SQL 查询出结果表并转换为数据流
将数据流写入目标数据库
2、功能实现
(1)添加FlinkSQL依赖
(2)定义 Table 流环境StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);
(3)将数据源topic定义为动态表WITH (" + MyKafkaUtil.getKafkaDDL(orderWideTopic, groupId) + ")");
WATERMARK FOR rowtime AS rowtime 是把某个虚拟字段设定为 EVENT_TIME
(4)拼接 Kafka 相关属性到 DDL
(5)做聚合运算
Env.sqlQuery("select " +……并将其转换为数据流
DataStream<ProvinceStats> provinceStatsDataStream =
tableEnv.toAppendStream(provinceStateTable, ProvinceStats.class);
(6)定义地区统计宽表实体类并写入到ClickHouse(addSink)
五、关键词主题表(Flink SQL)
1、需求分析
维度聚合决定关键词的大小
来源:用户在搜索框中的搜索、以商品为主题的统计中获取
2、搜索关键词的实现
(1)使用IK分词器对字符串进行分词
(2)编写自定义函数,将分词器加入FlinkSQL中
Flink的自定义函数包括:Scalar Function(相当于 Spark 的 UDF)、Table Function(相当于 Spark 的 UDTF)、Aggregation Functions (相当于 Spark 的 UDAF)
由于分词是一对多的拆分,应该选择TableFunction
封装 KeywordUDTF 函数,自定义UDTF,继承TableFunction
(3)定义Table流环境
(4)注册自定义函数,将数据源定义为动态表
(5)过滤非空数据 tableEnv.sqlQuery
(6)利用 UDTF 进行拆分(SQL内部)LATERAL TABLE(ik_analyze(fullword)) as T(keyword)");
(7)聚合,根据各个关键词出现次数进行 ct
(8)转换为流并写入 ClickHouse
建表、封装实体类、添加sink
六、总结
1、DWS 层主要是基于 DWD 和 DWM 层的数据进行轻度聚合统计
2、利用 union 操作实现多流的合并
3、窗口聚合操作
4、对 clickhouse 数据库的写入操作
5、FlinkSQL 实现业务
6、分词器的使用
7、在 FlinkSQL 中自定义函数的使用
【实时数仓】Day04-DWS层业务:DWS设计、访客宽表、商品主题宽表、流合并、地区主题表、FlinkSQL、关键词主题表、分词的更多相关文章
- 美团点评基于 Flink 的实时数仓建设实践
https://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651749037&idx=1&sn=4a448647b3dae5 ...
- 基于 Kafka 的实时数仓在搜索的实践应用
一.概述 Apache Kafka 发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员.Apache Kafka 社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得 ...
- 实时数仓(二):DWD层-数据处理
目录 实时数仓(二):DWD层-数据处理 1.数据源 2.用户行为日志 2.1开发环境搭建 1)包结构 2)pom.xml 3)MykafkaUtil.java 4)log4j.properties ...
- HBase实战 | 知乎实时数仓架构演进
https://mp.weixin.qq.com/s/hx-q13QteNvtXRpNsE5Y0A 作者 | 知乎数据工程团队编辑 | VincentAI 前线导读:“数据智能” (Data Inte ...
- (转)用Flink取代Spark Streaming!知乎实时数仓架构演进
转:https://mp.weixin.qq.com/s/e8lsGyl8oVtfg6HhXyIe4A AI 前线导读:“数据智能” (Data Intelligence) 有一个必须且基础的环节,就 ...
- flink实时数仓从入门到实战
第一章.flink实时数仓入门 一.依赖 <!--Licensed to the Apache Software Foundation (ASF) under oneor more contri ...
- 基于Flink构建全场景实时数仓
目录: 一. 实时计算初期 二. 实时数仓建设 三. Lambda架构的实时数仓 四. Kappa架构的实时数仓 五. 流批结合的实时数仓 实时计算初期 虽然实时计算在最近几年才火起来,但是在早期也有 ...
- 基于 Flink 的实时数仓生产实践
数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战.在智能商业中,数据的结果代表了用户反馈.获取数据的及时性尤为重要.快速获取数据反馈能够帮助公司更快地做出决策,更好地进行 ...
- 更强大的实时数仓构建能力!分析型数据库PostgreSQL 6.0新特性解读
阿里云 AnalyticDB for PostgreSQL 为采用MPP架构的分布式集群数据库,完备支持SQL 2003,部分兼容Oracle语法,支持PL/SQL存储过程,触发器,支持标准数据库事务 ...
- Clickhouse实时数仓建设
1.概述 Clickhouse是一个开源的列式存储数据库,其主要场景用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告.今天,笔者就为大家介绍如何使用Clickhouse来构建实 ...
随机推荐
- Ceph 有关知识简介
Ceph 存储集群至少需要一个 Ceph Monitor 和两个 OSD 守护进程.而运行 Ceph 文件系统客户端时,则必须要有元数据服务器( Metadata Server ). Ceph OSD ...
- Dockerfile文件中的ENTRYPOINT,CMD命令跟k8s中command,args之间的关系
- 基于 Apache Hudi 极致查询优化的探索实践
摘要:本文主要介绍 Presto 如何更好的利用 Hudi 的数据布局.索引信息来加速点查性能. 本文分享自华为云社区<华为云基于 Apache Hudi 极致查询优化的探索实践!>,作者 ...
- Codeforces Round #823 (Div. 2) A-D
比赛链接 A 题解 知识点:贪心. 对于一个轨道,要么一次性清理,要么一个一个清理.显然,如果行星个数大于直接清理的花费,那么选择直接清理,否则一个一个清理.即 \(\sum \min (c,cnt[ ...
- 通过刷题HTML遇到的问题
通过刷题HTML遇到的问题 1.有关选择器的权重问题 1.通配符选择器和继承:权重为0, 2.标签选择器:权重为0001 3.类选择器:权重为0010 4.id选择器:权重为0100 5.行内样式:权 ...
- Redis—问题(1)
写在前面 Redis 是一种 NoSQL 数据库,包含多种数据结构.支持网络.基于内存.可选持久性的键值对存储数据库,在我们的日常开发中会经常使用 Redis 来解决许多问题,比如排行榜.消息队列系统 ...
- 六、dockerfile
一.什么是镜像 镜像可以看成是由多个镜像层叠加起来的一个文件系统(通过UnionFS与AUFS文件联合系统实现),镜像层也可以简单理解为一个基本的镜像,而每个镜像层之间通过指针的形式进行叠加. 根据上 ...
- 基于PCIe DMA的多通道数据采集和回放IP
基于PCIe DMA的多通道数据采集和回放IP 在主机端PCIe驱动的控制和调度下,数据采集与回放IP Core可以同时完成对多个通道数据的采集以及回放驱动工作,既可采用行缓存机制(无需帧缓存,无需D ...
- SpringBoot 常用注解的原理和使用
@AutoConfiguration 读取所有jar包下的 /META-INF/spring.factories 并追加到一个 LinkedMultiValueMap 中.每一个url中记录的文件路径 ...
- @confirguration(proxyBeanMethods = false)的作用,如何选择Full模式和Lite模式
@Configuration(proxyBeanMethods = false) //告诉SpringBoot这是一个配置类 == 配置文件 public class MyConfig { @Bean ...