2023-01-02:某天,小美在玩一款游戏,游戏开始时,有n台机器,
每台机器都有一个能量水平,分别为a1、a2、…、an,
小美每次操作可以选其中的一台机器,假设选的是第i台,
那小美可以将其变成 ai+10^k(k为正整数且0<=k<=9),
由于能量过高会有安全隐患,所以机器会在小美每次操作后会自动释放过高的能量
即变成 (ai+10^k)%m
其中%m表示对m取模,由于小美还有工作没有完成,所以她想请你帮她计算一下,
对于每台机器,将其调节至能量水平为0至少需要多少次操作
(机器自动释放能量不计入小美的操作次数)。
第一行两个正整数n和m,表示数字个数和取模数值。
第二行为n个正整数a1, a2,… an,其中ai表示第i台机器初始的能量水平。
1 <= n <= 30000,2 <= m <= 30000, 0 <= ai <= 10^12。
来自美团。

答案2023-01-02:

打表法。
用rust和solidity写代码。

代码用rust编写。代码如下:

use std::iter::repeat;
fn main() {
let n = 5;
let m = 11;
let mut arr = vec![1, 3, 5, 7, 9];
let ans = times(n, m, &mut arr);
println!("ans = {:?}", ans);
} fn times(n: i32, m: i32, arr: &mut Vec<i32>) -> Vec<i32> {
// map[i] : i这个余数变成余数0,需要至少操作几次?
let mut map: Vec<i32> = repeat(0).take(m as usize).collect();
bfs(m, &mut map);
let mut ans: Vec<i32> = repeat(0).take(n as usize).collect();
for i in 0..n {
let num = arr[i as usize];
let mut min_times = i32::MAX;
if num < m {
min_times = map[num as usize];
} else {
let mut add: i64 = 1;
while add <= 1000000000 {
let mod0: i32 = ((num as i64 + add) % m as i64) as i32;
min_times = get_min(min_times, map[mod0 as usize] + 1);
add *= 10;
}
}
ans[i as usize] = min_times;
}
return ans;
} fn bfs(m: i32, map: &mut Vec<i32>) {
let mut visited: Vec<bool> = repeat(false).take(m as usize).collect();
visited[0] = true;
let mut queue: Vec<i32> = repeat(0).take(m as usize).collect();
let mut l = 0;
let mut r = 1;
// map[0] == 0
// 表示余数0变成余数0,需要至少0次
// 0进队列了, queue[0] = 0
// 0算访问过了,visited[0] = true
while l < r {
// 当前弹出的余数是cur
let cur = queue[l as usize];
l += 1;
// 能加的数字,从1枚举到10^9
let mut add: i64 = 1;
while add <= 1000000000 {
// 比如,m == 7
// 当前余数是cur,cur变成余数0,至少要a次
// 我们想知道 : (哪个余数b + add) % m == cur
// 比如,add=10的时候,cur==5的时候
// 我们想知道 : (哪个余数b + 10) % 7 == 5
// 因为10 % 7 = 3
// 所以其实我们在求 : 哪个余数b + 3 == 5
// 显然b = 5 - 3 = cur - (add % m) = 2
// 再比如,add=10的时候,cur==2的时候
// 我们想知道 : (哪个余数b + 10) % 7 == 2
// 因为10 % 7 = 3
// 所以其实我们在求 : 哪个余数b + 3 == 2
// 这明显是不对的,
// 所以其实我们在求 : 哪个余数b + 3 == 2 + m == 9
// 也就是b,通过加了add % m,来到了m + cur,多转了一圈
// b = 9 - 3 = cur - (add % m) + m = 6
// 也就是说,b = cur - (add % m),
// 如果不小于0,那就是这个b,是我们要找的余数
// 如果小于0,那就是b+m,是我们要找的余数
let mut from: i32 = cur - (add % m as i64) as i32;
if from < 0 {
from += m;
}
// 这个余数我们终于找到了,因为cur变成余数0,需要a次
// 所以这个余数变成余数0,需要a+1次
// 当然前提是这个余数,之前宽度优先遍历的时候,没遇到过
if !visited[from as usize] {
visited[from as usize] = true;
map[from as usize] = map[cur as usize] + 1;
queue[r as usize] = from;
r += 1;
}
add *= 10;
}
}
} fn get_min<T: Clone + Copy + std::cmp::PartialOrd>(a: T, b: T) -> T {
if a < b {
a
} else {
b
}
}

代码用solidity编写。代码如下:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17; contract Hello{
function main() public pure returns (int32[] memory){
int32 n = 5;
int32 m = 11;
int32[] memory arr = new int32[](5);
arr[0] = 1;
arr[1] = 3;
arr[2] = 5;
arr[3] = 7;
arr[4] = 9;
int32[] memory ans = times(n,m,arr);
return ans;
} function times(int32 n,int32 m,int32[] memory arr) public pure returns (int32[] memory){
// map[i] : i这个余数变成余数0,需要至少操作几次?
uint mm=uint(uint32(m));
int32[] memory map = new int32[](mm);
bfs(m, map);
uint nn=uint(uint32(n));
int32[] memory ans = new int32[](nn);
for (uint i = 0; i < nn; i++) {
int32 num = arr[i];
int32 minTimes = 2147483647;
if (num < m) {
minTimes = map[uint(uint32(num))];
} else {
for (int64 add = 1; add <= 1000000000; add *= 10) {
int32 mod = int32((int64(num) + add) % int64(m));
minTimes = getMin(minTimes, map[uint(uint32(mod))] + 1);
}
}
ans[i] = minTimes;
}
return ans;
} function getMin(int32 a,int32 b) public pure returns (int32){
if(a<b){
return a;
}else{
return b;
}
} function bfs(int32 m,int32[] memory map) public pure{
uint mm=uint(uint32(m));
bool[] memory visited = new bool[](mm);
visited[0]=true;
int32[] memory queue = new int32[](mm);
int32 l = 0;
int32 r = 1;
// map[0] == 0
// 表示余数0变成余数0,需要至少0次
// 0进队列了, queue[0] = 0
// 0算访问过了,visited[0] = true
while(l<r){
// 当前弹出的余数是cur
int32 cur = queue[uint(uint32(l))];
l++;
// 能加的数字,从1枚举到10^9
for(int64 add = 1;add<=1000000000;add*=10){
// 比如,m == 7
// 当前余数是cur,cur变成余数0,至少要a次
// 我们想知道 : (哪个余数b + add) % m == cur
// 比如,add=10的时候,cur==5的时候
// 我们想知道 : (哪个余数b + 10) % 7 == 5
// 因为10 % 7 = 3
// 所以其实我们在求 : 哪个余数b + 3 == 5
// 显然b = 5 - 3 = cur - (add % m) = 2
// 再比如,add=10的时候,cur==2的时候
// 我们想知道 : (哪个余数b + 10) % 7 == 2
// 因为10 % 7 = 3
// 所以其实我们在求 : 哪个余数b + 3 == 2
// 这明显是不对的,
// 所以其实我们在求 : 哪个余数b + 3 == 2 + m == 9
// 也就是b,通过加了add % m,来到了m + cur,多转了一圈
// b = 9 - 3 = cur - (add % m) + m = 6
// 也就是说,b = cur - (add % m),
// 如果不小于0,那就是这个b,是我们要找的余数
// 如果小于0,那就是b+m,是我们要找的余数
int32 from = cur - int32(add%int64(m));
if (from < 0) {
from += m;
}
// 这个余数我们终于找到了,因为cur变成余数0,需要a次
// 所以这个余数变成余数0,需要a+1次
// 当然前提是这个余数,之前宽度优先遍历的时候,没遇到过
if (!visited[uint(uint32(from))]) {
visited[uint(uint32(from))] = true;
map[uint(uint32(from))] = map[uint(uint32(cur))] + 1;
queue[uint(uint32(r))] = from;
r++;
}
}
}
} }


2023-01-02:某天,小美在玩一款游戏,游戏开始时,有n台机器, 每台机器都有一个能量水平,分别为a1、a2、…、an, 小美每次操作可以选其中的一台机器,假设选的是第i台, 那小美可以将其变成的更多相关文章

  1. 2017-5-14 湘潭市赛 Partial Sum 给n个数,每次操作选择一个L,一个R,表示区间左右端点,该操作产生的贡献为[L+1,R]的和的绝对值-C。 0<=L<R<=n; 如果选过L,R这两个位置,那么以后选择的L,R都不可以再选择这两个位置。最多操作m次,求可以获得的 最大贡献和。

    Partial Sum Accepted : Submit : Time Limit : MS Memory Limit : KB Partial Sum Bobo has a integer seq ...

  2. linux下生成00 01 02..99的这些数

    [root@localhost ~]# seq -s " " -w 9901 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 ...

  3. hdu5795 A Simple Nim 求nim求法,打表找sg值规律 给定n堆石子,每堆有若干石子,两个人轮流操作,每次操作可以选择任意一堆取走任意个石子(不可以为空) 或者选择一堆,把它分成三堆,每堆不为空。求先手必胜,还是后手必胜。

    /** 题目:A Simple Nim 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5795 题意:给定n堆石子,每堆有若干石子,两个人轮流操作,每次操作 ...

  4. Codeforces Round #304 (Div. 2) B. Soldier and Badges【思维/给你一个序列,每次操作你可以对一个元素加1,问最少经过多少次操作,才能使所有元素互不相同】

    B. Soldier and Badges time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  5. 2023 01 19 HW

    2023 01 19 HW Okay, then let's start.  Okay. Maybe Karina, we start with the C2 design freeze. Yeah, ...

  6. Codeforces Round #191 (Div. 2) A. Flipping Game【*枚举/DP/每次操作可将区间[i,j](1=<i<=j<=n)内牌的状态翻转(即0变1,1变0),求一次翻转操作后,1的个数尽量多】

    A. Flipping Game     time limit per test 1 second memory limit per test 256 megabytes input standard ...

  7. ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏

    今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战&g ...

  8. DOM对象本身也是一个js对象,所以严格来说,并不是操作这个对象慢,而是说操作了这个对象后,会触发一些浏览器行为(转)

    一直都听说DOM很慢,要尽量少的去操作DOM,于是就想进一步去探究下为什么大家都会这样说,在网上学习了一些资料,这边整理出来. 首先,DOM对象本身也是一个js对象,所以严格来说,并不是操作这个对象慢 ...

  9. 用python实现自动玩21点小游戏

    1. 背景 前段时间发现一个论坛上(https://npupt.com/blackjack.php)有21点小游戏. 这个21点小游戏的规则是每个人开局都会获得随机点数,如果觉得点数小,可以继续摸牌. ...

  10. 【jQuery】复选框的全选、反选,推断哪些复选框被选中

    本文与<[JavaScript]复选框的全选.反选.推断哪些复选框被选中>(点击打开链接)为姊妹篇,把里面内容再与jQuery框架中实现一次,相同做到例如以下的效果: 布局还是相同的布局, ...

随机推荐

  1. arcengine标注转注记

    只是将在arcmap中添加注记的方式模拟了一遍,因此,首先显示标注(Label),而后将其转换为注记(Annotation)(Convert Label To Annotation) /******* ...

  2. 【LuckyFrame研究】环境准备

    LuckyFrame官方使用手册:http://www.luckyframe.cn/book/yhsc/syschyy-24.html LuckyFrame在码云平台或是GitHub上都是分成二个项目 ...

  3. 基本的dns命令

    打开cmd的方式 win+r 键 输入cmd       管理员方式运行    打开桌面  命令提示符 盘符切换 直接输入要切换的盘 查看当前目录下所有文件   dir 切换目录  cd  /d 跨盘 ...

  4. centos7下安装Node.js MongoDB Nginx

     一.Node.js 方法1(笔者采用).如果对Node.js环境有比较高的要求,建议选择源码安装的方式进行安装,通过wget命令下载Node.js官网上的tar.gz文件包到centos服务器上,进 ...

  5. 基于Mindspore2.0的GPT2预训练模型迁移教程

    摘要: 这篇文章主要目的是为了让大家能够清楚如何用MindSpore2.0来进行模型的迁移. 本文分享自华为云社区<MindNLP-基于Mindspore2.0的GPT2预训练模型迁移教程> ...

  6. DVWA-Weak Session IDs(弱会话ID) 不安全的会话

    在登录服务器之后,服务器会返回给用户一个会话(session),这个会话只会存在一段时间,拥有这个会话下次登录就不用输入密码就可以登录到网站,如果返回的这个会话很弱,容易被猜解到,就很不安全,照成会话 ...

  7. WinHex恢复分区

    情景再现:可能在某一天,打开电脑时发现只剩C盘,剩下的盘找不到了,那么要如何恢复呢? 创建虚拟硬盘方便我们做实验 右键计算机 -> 管理 -> 磁盘管理右键 -> 创建VHD虚拟硬盘 ...

  8. windows2003 的安装以及安装时遇到的问题

    windows2003 的安装以及安装时遇到的问题 简介:Windows Server 2003是微软于2003年3月28日发布的基于Windows XP/NT5.1开发的服务器操作系统,并在同年4月 ...

  9. 看了还不懂b+tree的本质就来打我

    看了还不懂b+tree的本质就来打我 大家好,我是蓝胖子. 今天我们来看看b+tree这种数据结构,我们知道数据库的索引就是由b+tree实现,那么这种结构究竟为什么适合磁盘呢,它又有哪些缺点呢? 我 ...

  10. Python--基本知识认知及应用

    字面量 概念:被写下来的固定的值(既包括print里面的值,也包括直接写到编程页面的值) 在Python中,常用的有六种值的类型:数字.字符串.列表.元组.集合以及字典: Python中,被双引号包围 ...