基于OpenCV实现图片及视频中选定区域颜色识别

近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步优化,但提升有限。

主要实现过程:按不同颜色的取值范围,对图像进行循环遍历,转换为灰度图,将本次遍历的颜色像素转换为白色,对白色部分进行膨胀处理,使其更加连续,计算白色部分外轮廓包围的面积累加求和,比较每种颜色围起来面积,保存最大值及其颜色,所有颜色遍历完后,返回最大值对应的颜色,显示在图像上

如果有类似的颜色识别的任务,可参考以下代码修改后实现具体需求

colorList.py

import numpy as np
import collections # 将rgb图像转换为hsv图像后,确定不同颜色的取值范围
def getColorList():
dict = collections.defaultdict(list) # black
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 46])
color_list_black = []
color_list_black.append(lower_black)
color_list_black.append(upper_black)
dict['black'] = color_list_black # gray
lower_gray = np.array([0, 0, 46])
upper_gray = np.array([180, 43, 220])
color_list_gray= []
color_list_gray.append(lower_gray)
color_list_gray.append(upper_gray)
dict['gray'] = color_list_gray # white
lower_white = np.array([0, 0, 221])
upper_white = np.array([180, 30, 255])
color_list_white = []
color_list_white.append(lower_white)
color_list_white.append(upper_white)
dict['white'] = color_list_white # red
lower_red = np.array([156, 43, 46])
upper_red = np.array([180, 255, 255])
color_list_red = []
color_list_red.append(lower_red)
color_list_red.append(upper_red)
dict['red'] = color_list_red # red2
lower_red = np.array([0, 43, 46])
upper_red = np.array([10, 255, 255])
color_list_red2 = []
color_list_red2.append(lower_red)
color_list_red2.append(upper_red)
dict['red2'] = color_list_red2 # orange
lower_orange = np.array([11, 43, 46])
upper_orange = np.array([25, 255, 255])
color_list_orange = []
color_list_orange.append(lower_orange)
color_list_orange.append(upper_orange)
dict['orange'] = color_list_orange # yellow
lower_yellow = np.array([26, 43, 46])
upper_yellow = np.array([34, 255, 255])
color_list_yellow = []
color_list_yellow.append(lower_yellow)
color_list_yellow.append(upper_yellow)
dict['yellow'] = color_list_yellow # green
lower_green = np.array([35, 43, 46])
upper_green = np.array([77, 255, 255])
color_list_green = []
color_list_green.append(lower_green)
color_list_green.append(upper_green)
dict['green'] = color_list_green # cyan
lower_cyan = np.array([78, 43, 46])
upper_cyan = np.array([99, 255, 255])
color_list_cyan = []
color_list_cyan.append(lower_cyan)
color_list_cyan.append(upper_cyan)
dict['cyan'] = color_list_cyan # blue
lower_blue = np.array([100, 43, 46])
upper_blue = np.array([124, 255, 255])
color_list_blue = []
color_list_blue.append(lower_blue)
color_list_blue.append(upper_blue)
dict['blue'] = color_list_blue # purple
lower_purple = np.array([125, 43, 46])
upper_purple = np.array([155, 255, 255])
color_list_purple = []
color_list_purple.append(lower_purple)
color_list_purple.append(upper_purple)
dict['purple'] = color_list_purple return dict if __name__ == '__main__':
color_dict = getColorList()
print(color_dict) num = len(color_dict)
print('num=', num) for d in color_dict:
print('key=', d)
print('value=', color_dict[d][1])

image_color_realize.py

import cv2
import colorList # 实现对图片中目标区域颜色的识别
def get_color(frame):
print('go in get_color')
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
maxsum = 0
color = None
color_dict = colorList.getColorList() # count = 0 for d in color_dict:
mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1]) # 在后两个参数范围内的值变成255
binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] # 在灰度图片中,像素值大于127的都变成255,[1]表示调用图像,也就是该函数第二个返回值 # cv2.imshow("0",binary)
# cv2.waitKey(0)
# count+=1 binary = cv2.dilate(binary, None, iterations=2) # 使用默认内核进行膨胀操作,操作两次,使缝隙变小,图像更连续
cnts = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] # 获取该函数倒数第二个返回值轮廓
sum = 0
for c in cnts:
sum += cv2.contourArea(c) # 获取该颜色所有轮廓围成的面积的和
# print("%s , %d" %(d, sum ))
if sum > maxsum:
maxsum = sum
color = d
if color == 'red2':
color = 'red'
elif color == 'orange':
color = 'yellow'
elif color == 'purple' or color == 'blue' or color == 'cyan' or color == 'white' or color == 'green':
color = 'normal'
return color if __name__ == '__main__':
filename = "C:/Users/admin/Desktop/water_samples/live01.jpg"
frame = cv2.imread(filename)
# frame = frame[180:280, 180:380] # [y:y+h, x:x+w] 注意x,y顺序
color = get_color(frame) # 绘制文本
cv2.putText(img=frame,text=color,org=(20,50),fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,color=(0,255,0),thickness=2) # cv2.namedWindow('frame',cv2.WINDOW_NORMAL) # 设置显示窗口可调节
cv2.imshow('frame',frame)
cv2.waitKey(0)

video_color_realize.py

import cv2
import xf_color # 对视频或摄像头获取的影像目标区域颜色进行识别 cap = cv2.VideoCapture("C:/Users/admin/Desktop/water_samples/01.mp4")
# cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1100) # 这里窗口大小调节只对摄像头有效
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 750) while cap.isOpened():
ret, frame0 = cap.read()
# 对图像帧进行翻转(因为opencv图像和我们正常是反着的) 视频是正常的,摄像头是反转的
# frame0 = cv2.flip(src=frame0, flipCode=2) # frame = frame[180:280, 180:380] # [y:y+h, x:x+w]
# frame = frame0[200:400, 100:300] # 设置检测颜色的区域,四个顶点坐标
frame = frame0 # frame=cv2.resize(src=frame,dsize=(750,600))
hsv_frame = cv2.cvtColor(src=frame, code=cv2.COLOR_BGR2HSV)
# 获取读取的帧的高宽
height, width, channel = frame.shape
color = xf_color.get_color(hsv_frame)
# 绘制文本
cv2.putText(img=frame0, text=color, org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0, color=(0, 255, 0), thickness=2)
cv2.imshow('frame', frame0)
key = cv2.waitKey(1)
if key == 27:
break cap.release()
cv2.destroyAllWindows() if __name__ == '__main__':
print('Pycharm')

效果如下:

示例图片1

示例图片2

示例图片3

基于OpenCV实现对图片及视频中感兴趣区域颜色识别的更多相关文章

  1. opencv探索之路(十二):感兴趣区域ROI和logo添加技术

    在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...

  2. opencv——感兴趣区域(ROI)的分析和选取[详细总结]

    引言 在利用OpenCV对图像进行处理时,通常会遇到一个情况,就是只需要对部分感兴趣区域进行处理.因此,如何选取感兴趣区域呢?(其实就是"抠图"). 在学习opencv的掩码运算后 ...

  3. 基于opencv在摄像头ubuntu根据视频获取

     基于opencv在摄像头ubuntu根据视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译执行步骤 安装编译opencv-2.3  參考h ...

  4. 提取出图像中感兴趣的部分,cvSetImageRoi,Rect

    在做人脸检测的时候,需要从摄像头拍摄视频中把检测到的人脸区域提取出来,网上找了很多博客,发现多数都是在用cvSetImageRoi函数,该函数声明如下:void cvSetImageROI(IplIm ...

  5. Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages

    Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages Web网页中动态数据区域的识别 ...

  6. opencv —— copyTo 设置与操作感兴趣区域(ROI)

    感兴趣区域:ROI 对感兴趣区域进行的一系列操作,相当于直接在原图相应部分进行操作. Mat imageROI = srcImage(Rect(0,0,dstImage.cols, dstImage. ...

  7. Python+Opencv实现把图片转为视频

    1. 安装Opencv包 在Python命令行输入如下命令(如果你使用的Anaconda,直接进入Anaconda Prompt键入命令即可.如果你不知道Anaconda是什么,可以参考王树义老师的文 ...

  8. [zt] ROI (Region of Interest) 感兴趣区域 OpenCV

    在以前介绍IplImage结构的时候,有一个重要的参数——ROI.ROI全称是”Region Of Interest”,即感兴趣的区域.实际上,它是IPL/IPP(这两个是Inter的库)结构IplR ...

  9. 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)

    1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...

随机推荐

  1. Volatile的学习

    首先先介绍三个性质 可见性 可见性代表主内存中变量更新,线程中可以及时获得最新的值. 下面例子证明了线程中可见性的问题 由于发现多次执行都要到主内存中取变量,所以会将变量缓存到线程的工作内存,这样当其 ...

  2. Git 后续——分支与协作

    Git 后续--分支与协作 本文写于 2020 年 9 月 1 日 之前一篇文章写了 Git 的基础用法,但那其实只是「单机模式」,Git 之所以在今天被如此广泛的运用,是脱不开分支系统这一概念的. ...

  3. vue中blob文件下载及其它下载方式

    一.Blob对象的了解 1:blob表示一个不可变.原始数据的类文件对象.Blob()构造函数返回一个新的blob对象:blob对象的内容由参数给出的值串联组成: 2:new Blob(array, ...

  4. leetcode 3. Longest Substring Without Repeating Characters 无重复字符的最长子串

    一.题目大意 https://leetcode.cn/problems/longest-substring-without-repeating-characters/ 给定一个字符串 s ,请你找出其 ...

  5. 图解Dijkstra(迪杰斯特拉)算法+代码实现

    简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的 ...

  6. [C++STL] set 容器的入门

    set 容器的入门 unordered_set:另外头文件,乱序排放,使用哈希表(便于查找) multiset:可以重复存在的集合.用count()读取个数 创建set的几种方式 常规 set< ...

  7. 网络编程之socket套接字

    目录 socket套接字简介 socket模块 通信循环 代码优化 连接循环 半连接池 黏包问题 解决黏包问题 黏包问题特殊情况(文件过大) socket套接字简介 由于操作OSI七层是所有C/S架构 ...

  8. Kitex源码阅读——脚手架代码是如何通过命令行生成的(一)

    前言 Kitex是字节跳动内部的Golang微服务RPC框架,先已开源. Kitex文档:https://www.cloudwego.io/zh/docs/kitex/getting-started/ ...

  9. SQLServer2008中的Merge

    SqlServer2008 +  中的 Merge Merge:  合并   融合 SqlServer2008 中的Merge 用于匹配两种表中的数据,根据源表和目标表中的数据的比较结果对目标表进行对 ...

  10. ftp多文件压缩下载

    @GetMapping(value = "/find") public String findfile(String filePath, String fileNames, Htt ...