@

安装

运行时Java版本推荐

Locally Standalone集群

启动

# 下载最新版本为2.11.0,需要Java 17
wget https://archive.apache.org/dist/pulsar/pulsar-2.11.0/apache-pulsar-2.11.0-bin.tar.gz
# 解压
tar xvfz apache-pulsar-2.11.0-bin.tar.gz
# 进入根目录
cd apache-pulsar-2.11.0
# 目录结构
ls -1F

  • bin:pulsar入口点脚本,以及许多其他命令行工具。
  • conf:配置文件,包括pulsar示例pulsar函数示例实例使用的broker.conf
  • examples:函数示例。
  • lib:使用的jar。
  • instances:函数的实例。
# 启动
bin/pulsar standalone
# 要将服务作为后台进程运行,可以使用下面命令
bin/pulsar -daemon start standalone

查看日志可以看到本地的pulsar standalone 集群启动成功日志

Pulsar集群启动时,会创建以下目录

  • data:BookKeeper和RocksDB创建的所有数据。
  • logs:所有服务日志。

公共/默认名称空间是在启动Pulsar集群时创建的。此名称空间用于开发目的。所有Pulsar主题都在名称空间中管理。

验证

  • 创建主题
bin/pulsar-admin topics create persistent://public/default/test-topic1
  • 写入消息
bin/pulsar-client produce test-topic1 --messages 'Hello ,welcome Pulsar!'

  • 读消息
bin/pulsar-client consume test-topic1 -s 'my-subscription' -p Earliest -n 0

部署分布式集群

部署说明

这里使用Pulsar二进制包部署,不同于K8S部署集群,为了可以更好理解Pulsar架构。Pulsar实例由多个Pulsar 集群共同工作组成。可以跨数据中心或地理区域分布集群,并使用地理复制在它们之间复制集群。搭建Pulsar集群至少需要3个组件:ZooKeeper集群、BookKeeper集群、Broker集群。

  • 3个节点ZooKeeper集群。建议生产部署两个独立的ZooKeeper集群,一个Local用于实例中的每个集群,另一个Configuration Store用于实例级任务。如果部署单集群实例,则不需要配置存储的单独集群。但如果部署了一个多集群实例,应该为配置任务建立一个单独的ZooKeeper集群。

    • Local ZooKeeper运行在集群级别,提供特定于集群的配置管理和协调。每个Pulsar集群需要一个专用的ZooKeeper集群。
    • Configuration Store在实例级上操作,并为整个系统(因此跨集群)提供配置管理。一个独立的机器集群或本地ZooKeeper使用的相同的机器可以提供配置存储仲裁。
  • 3个节点BookKeeper集群。
  • 3个节点Pulsar节点集群(Broker是Pulsar自身的实例)。

Pulsar的安装包已经包含搭建分布式集群所需的组件库,无需单独下载ZooKeeper和BookKeeper的安装包。但在实际中,zookeeper并不仅仅应用在pulsar上,之前介绍很多大数据组件依赖zookeeper,因此我们也使用外置的zookeeper环境。需要apache-zookeeper-3.8.0以上版本,我这里是apache-zookeeper-3.8.1。下面使用上面Standalone的下载的apache-pulsar-2.11.0-bin.tar.gz来部署分布式集群。

初始化集群元数据

只需要初始化一次接口,可以使用pulsar CLI工具的initialize-cluster-metadata命令初始化该元数据

bin/pulsar initialize-cluster-metadata \
--cluster pulsar-cluster \
--metadata-store zk1:2181,zk2:2181,zk3:2181 \
--configuration-metadata-store zk1:2181,zk2:2181,zk3:2181 \
--web-service-url http://hadoop1:8080/ \
--web-service-url-tls https://hadoop1:8443/ \
--broker-service-url pulsar://hadoop1:6650/ \
--broker-service-url-tls pulsar+ssl://hadoop1:6651/ bin/pulsar initialize-cluster-metadata \
--cluster pulsar-cluster \
--metadata-store hadoop1:2181 \
--configuration-metadata-store hadoop1:2181 \
--web-service-url http://hadoop1:8080/ \
--web-service-url-tls https://hadoop1:8443/ \
--broker-service-url pulsar://hadoop1:6650/ \
--broker-service-url-tls pulsar+ssl://hadoop1:6651/

初始化命令的参数说明

  • 集群的名称
  • 本地元数据存储集群的连接字符串
  • 整个实例的配置存储连接字符串
  • 集群的web服务URL
  • 支持与集群中的代理交互的代理服务URL

初始化成功日志如下

部署BookKeeper

BookKeeper为Pulsar提供持久消息存储。每个pulsar broker 都需要自己的bookies集群。BookKeeper集群与Pulsar集群共享一个本地ZooKeeper仲裁。

bookies主机负责在磁盘上存储消息数据。为了让bookie提供最佳的性能,拥有合适的硬件配置对bookie来说是必不可少的。以下是bookies硬件容量的关键维度。

  • 磁盘I/O读写容量
  • 存储容量

通过配置文件conf/bookeeper.conf配置BookKeeper bookies。配置每个bookie最重要的方面是确保zkServers参数被设置为Pulsar集群的本地ZooKeeper的连接字符串。vim conf/bookkeeper.conf

# 修改本地地址
advertisedAddress=hadoop1
zkServers=zk1:2181,zk2:2181,zk3:2181
# 可以以两种方式启动一个bookie:在前台或作为后台守护进程启动。使用pulsar-daemon命令行工具在后台启动一个bookie:
bin/pulsar-daemon start bookie
# 你可以使用BookKeeper shell的bookiesanity命令来验证bookie是否正常工作,.这个命令在本地bookie上创建一个新的分类账,写一些条目,读回来,最后删除分类账。
bin/bookkeeper shell bookiesanity
# 在您启动了所有的bookie之后,可以在任何bookie节点上使用BookKeeper shell的simpletest命令,以验证集群中的所有bookie都在运行。
bin/bookkeeper shell simpletest --ensemble <num-bookies> --writeQuorum <num-bookies> --ackQuorum <num-bookies> --numEntries <num-entries>

其他bookie服务器也是同样配置(但需修改本地地址)和启动。

部署Broker

设置了ZooKeeper,初始化了集群元数据,并启动了BookKeeper bookie,就可以部署代理了。

修改配置文件 vi conf/broker.conf

clusterName=pulsar-cluster
advertisedAddress=hadoop1
zookeeperServers=zk1:2181,zk2:2181,zk3:2181
configurationStoreServers=zk1:2181,zk2:2181,zk3:2181
# 启动broker,bin/pulsar broker为前台启动
./bin/pulsar-daemon start broker

其他broker服务器也是同样配置(但需修改本地地址)和启动。查看broker的列表

./bin/pulsar-admin brokers list pulsar-cluster

Admin客户端和验证

# 可以配置客户端机器,这些客户端机器可以作为每个集群的管理客户端。可以使用conf/client.conf配置文件配置admin客户端。
serviceUrl=http://hadoop1:8080/
  • 创建租户
bin/pulsar-admin tenants create itxs-tenant \
--allowed-clusters pulsar-cluster \
--admin-roles test-admin-role

  • 创建namespace命名空间
bin/pulsar-admin namespaces create itxs-tenant/myns
  • 测试生产者和消费者
# 启动一个消费者,在主题上创建一个订阅并等待消息:
bin/pulsar-perf consume persistent://itxs-tenant/myns/test-topic1
# 启动一个生产者,以固定的速率发布消息,并每10秒报告一次统计数据:
bin/pulsar-perf produce persistent://itxs-tenant/myns/test-topic1
# 报告主题统计信息:
bin/pulsar-admin topics stats persistent://itxs-tenant/myns/test-topic1

生产者的日志如下

消费者的日志如下

主题统计信息的日志如下

Tiered Storage(层级存储)

概述

Pulsar的分层存储特性允许将旧的积压数据从BookKeeper转移到长期和更便宜的存储中,同时允许客户端访问积压数据。

以流的方式永久保留原始数据,分区容量不再限制,充分利用云存储或现在廉价存储(例如HDFS),数据统一,客户端无需关心数据究竟存在哪里。

  • 第一级:通过BookKeeper 预写日志
  • 第二级: Pulsar broker,可用于追尾读。提交消息后,可以直接将消息发给所有与此 topic 相关的订阅者,而不必使用磁盘。
  • 第三级: BookKeeper 节点上的 ledger 存储磁盘。将消息写入 BookKeeper 节点上的日志时,同时也写入到定期 flush 的 ledger 存储磁盘的内存缓冲区。BookKeeper 节点使用此磁盘提供读操作。
    • 在 Pulsar 中,从内存缓冲区读消息很少见。追尾 consumer 通常直接从 Pulsar 的缓存中读消息。追赶 consumer 通常请求很早之前的消息,因此这些消息一般不存储在内存缓冲区。Ledger 存储磁盘服务于追赶读。Ledger 存储磁盘采用的存储消息的格式不仅保证在同一 topic 上尽可能按顺序读取,还优化了在同一磁盘上存储多个不同 topic 的能力。由于 ledger 存储磁盘与日志磁盘相互隔离,读操作不会影响日志磁盘中按顺序写入的性能。
    • 如果为 Pulsar 配置了“分层存储”,则最后一级缓存为长期存储。分层存储允许用户对 topic backlog 中的较旧部分采用更节约成本的存储形式。分层存储利用了消息的不可变性,但粒度更大,因为在长期存储中单独存储每条消息会很浪费空间。Pulsar topic 日志由分片组成,每个分片默认对应一个包含 50000 条消息的序列。活跃分片只有一个,活跃分片之前的分片将关闭。当分片关闭时,无法继续添加新消息。假定分片中的单条消息不可变,并且单条消息的偏移量不可变,则此分片不可变。因此可以复制不可变对象到想要的任何位置。
    • 要在 Pulsar 中使用分层存储,用户必须使用基于时间或基于大小的策略来配置 topic 命名空间以卸载分片。当命名空间中的 topic 达到策略中定义的阈值时,Pulsar broker 将 topic 日志中最旧的分片复制到长期存储中,直到该 topic 低于策略阈值。经过一段时间后,Pulsar 从 BookKeeper 中删除原来的分片,以释放磁盘空间。
  • 第四级:Pulsar 支持将 Amazon S3 和 S3 兼容的对象存储用于长期存储,也支持 Azure 存储,并且从 Pulsar 2.2.0 起支持谷歌云存储。

支持分级存储

  • 分级存储使用Apache jclouds支持Amazon S3、GCS(谷歌云存储)、Azure和阿里云OSS进行长期存储。
  • 分级存储使用Apache Hadoop支持文件系统进行长期存储

何时使用

当你有一个主题,并且你想要在很长一段时间内保持一个很长的待办事项列表时,应该使用分层存储。例如,如果有一个包含用于训练推荐系统的用户操作的主题,希望长时间保留该数据,以便在更改推荐算法时可以根据完整的用户历史重新运行它。

工作原理

Pulsar中的主题由日志支持,称为托管分类账。这个日志由一个有序的段列表组成。脉冲星只写入日志的最后一段。所有之前的片段都是密封的。段内的数据是不可变的。这被称为面向段的体系结构。

  • 分层存储卸载机制利用了面向段的架构。当请求卸载时,日志段被逐个复制到分级存储中。写入分级存储的日志的所有段(除了当前段)都可以卸载。
  • 写入BookKeeper的数据默认复制到3台物理机上。然而,一旦一个段被密封在BookKeeper中,它就变得不可变,可以复制到长期存储中。长期储存有潜力实现显著的成本节约。
  • 在将分类帐卸载到长期存储之前,您需要为云存储服务配置桶、凭据和其他属性。此外,Pulsar使用多部分对象上传分段数据,代理可能会在上传数据时崩溃。建议为bucket添加一个生命周期规则,使其在一天或两天后过期未完成的多部分上传,以避免为未完成的上传收取费用。此外,可以手动(通过REST API或CLI)或自动(通过CLI)触发卸载操作。
  • 在将分类账卸载到长期存储后,仍然可以使用Pulsar SQL查询卸载的分类账中的数据。

了解层级存储的基础知识后本篇先到此,下一篇将实战介绍层级存储、Pulsar IO、Pulsar Functions、Pulsar SQL、Transactions的操作和示例演示。

本人博客网站IT小神 www.itxiaoshen.com

云原生时代顶流消息中间件Apache Pulsar部署实操-上的更多相关文章

  1. [转帖]从 SOA 到微服务,企业分布式应用架构在云原生时代如何重塑?

    从 SOA 到微服务,企业分布式应用架构在云原生时代如何重塑? 2019-10-08 10:26:28 阿里云云栖社区 阅读数 54   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权 ...

  2. CODING —— 云原生时代的研发工具领跑者

    本文为 CODING 创始人兼 CEO 张海龙在腾讯云 CIF 工程效能峰会上所做的分享. 文末可前往峰会官网,观看回放并下载 PPT. 大家上午好,很高兴能有机会与大家分享 CODING 最近的一些 ...

  3. 🏆【JVM深层系列】「云原生时代的Java虚拟机」针对于GraalVM的技术知识脉络的重塑和探究

    GraalVM 背景 新.旧编程语言的兴起躁动,说明必然有其需求动力所在,譬如互联网之于JavaScript.人工智能之于Python,微服务风潮之于Golang等等.大家都清楚不太可能有哪门语言能在 ...

  4. 阿里云弹性容器实例产品 ECI ——云原生时代的基础设施

    阿里云弹性容器实例产品 ECI ——云原生时代的基础设施 1. 什么是 ECI 弹性容器实例 ECI (Elastic Container Instance) 是阿里云在云原生时代为用户提供的基础计算 ...

  5. 进击的 Java ,云原生时代的蜕变

    作者| 易立 阿里云资深技术专家 导读:云原生时代的来临,与Java 开发者到底有什么联系?有人说,云原生压根不是为了 Java 存在的.然而,本文的作者却认为云原生时代,Java 依然可以胜任&qu ...

  6. 进击的.NET 在云原生时代的蜕变

    你一定看过这篇文章 <进击的 Java ,云原生时代的蜕变>,  本篇文章的灵感来自于这篇文章.明天就将正式发布.NET Core 3.0, 所以写下这篇文章让大家全面认识.NET Cor ...

  7. 开放下载 | 《Knative 云原生应用开发指南》开启云原生时代 Serverless 之门

    点击下载<Knative 云原生应用开发指南> 自 2018 年 Knative 项目开源后,就得到了广大开发者的密切关注.Knative 在 Kubernetes 之上提供了一套完整的应 ...

  8. .NET 在云原生时代的蜕变,让我在云时代脱颖而出

    .NET 生态系统是一个不断变化的生态圈,我相信它正在朝着一个伟大的方向发展.有了开源和跨平台这两个关键优先事项,我们就可以放心了.云原生对应用运行时的不同需求,说明一个.NET Core 在云原生时 ...

  9. 【转】.NET 在云原生时代的蜕变,让我在云时代脱颖而出

    原创:张善友 原文:https://www.cnblogs.com/shanyou/p/12198741.html .NET 生态系统是一个不断变化的生态圈,我相信它正在朝着一个伟大的方向发展.有了开 ...

  10. 云原生时代 给予.NET的机会

    .NET诞生于与Java的竞争,微软当年被罚款20亿美元. Java绝不仅仅是一种语言,它是COM的替代者! 而COM恰恰是Windows的编程模型.而Java编程很多时候比C++编程要容易的多,更致 ...

随机推荐

  1. Go语言核心36讲24

    你好,我是郝林,今天我们继续来聊聊panic函数.recover函数以及defer语句的内容. 我在前一篇文章提到过这样一个说法,panic之中可以包含一个值,用于简要解释引发此panic的原因. 如 ...

  2. 正则表达式之前戏、字符组、量词、特殊符号、贪婪与非贪婪匹配等,python正则模块之re

    目录 正则表达式前戏 正则表达式之字符组 正则表达式之特殊符号 正则表达式之量词 贪婪匹配与非贪婪匹配 转义符 正则表达式实战建议 re模块 re模块补充说明 作业 正则表达式前戏 案例:京东注册手机 ...

  3. Encodings: URL

    原题链接:http://www.wechall.net/challenge/training/encodings/url/index.php 题目信息:你的任务就是解码下面的东西.... 这个完全没难 ...

  4. js判断数组中是否有重复数据

    var arr=[1,3,5,7,9,9,10,10,11,12,34,3,6,92,1]; var tempbool = false; //默认无重复 for (let index = 0; ind ...

  5. 使用repo上传代码

    前言~ repo是一款安卓用于管理源码的工具,由python实现,基于git工具 本文介绍了repo的常用使用方式. 一,下载代码 1. repo init 初始化命令 此命令常用选项就那几个,此处取 ...

  6. ArcGIS QGIS学习二:图层如何只显示需要的部分几何面数据(附最新坐标边界下载全国省市区县乡镇)

    目录 前言 准备SHP数据 ArcMap 的筛选 QGIS 的筛选 如何编写查询条件 前言 当我们用GIS软件打开一个SHP文件的时候,会显示出里面全部的几何图形,假如我只想要其中的一部分数据显示出来 ...

  7. 实践案例:平安健康的 Dubbo3 迁移历程总结

    本篇是 Apache Dubbo 的实践案例.感兴趣的朋友可以访问官网了解更多详情,或搜索关注官方微信公众号 Apache Dubbo 跟进最新动态. 1 背景 我们公司从15年开始就使⽤dubbo作 ...

  8. 【微服务架构设计实施】第一部分:架构篇-1:微服务架构与Spring Cloud介绍

    〇.概述 一.微服务架构与Spring Cloud (一)概念 不同说法:细粒度的.清凉组件化的小型SOA(面向服务架构) 统一说法:小型应用程序(服务组件),使用轻量级设计方法和HTTP协议通信 理 ...

  9. TypeScript 之 Interface

    Interface 描述:用来描述对象的形状,能够被继承 常用语法 ( Common Syntax ) 1. 描述普通对象 interface JsonResponse { version:numbe ...

  10. 【Java】二分查找标准代码

    太菜了..写不出正确的... 干脆放一个标准代码,之后参考 boolean BinarySearch(int[] m){ int l=0,r=m.length-1;//减1相当于数组两头(lr都能指到 ...