相关信息

内核版本:Linux version 4.9.56
驱动文件:lichee\linux-4.9\drivers\video\backlight\backlight.c

驱动作用

  1. 对上,面对应用层提供统一的设备节点入口
  2. 同级,面对驱动层提供设备驱动加载卸载通知事件,以及背光控制接口。
  3. 对下,面对硬件层提供背光控制调节的回调接口
  4. 监听 frambuffer 事件, 实现清屏联动背光控制
  5. 监听系统休眠唤醒,实现休眠唤醒背光联动控制

控制背光的来源:应用访问、事件联动、休眠唤醒

源码分析

一、驱动初始化

  1. 完成背光设备逻辑类的创建
  2. 初始化用于通知背光设备驱动加载卸载的事件
  3. 为该逻辑类设定五个背光控制相关的设备节点
/sys/class/backlight/xxx/type
/sys/class/backlight/xxx/bl_power
/sys/class/backlight/xxx/brightness
/sys/class/backlight/xxx/max_brightness
/sys/class/backlight/xxx/actual_brightness
代码解析
static int __init backlight_class_init(void)
{
// 创建背光设备逻辑类: /sys/class/backlight
backlight_class = class_create(THIS_MODULE, "backlight");
if (IS_ERR(backlight_class)) {
pr_warn("Unable to create backlight class; errno = %ld\n", PTR_ERR(backlight_class));
return PTR_ERR(backlight_class);
} // 面对应用层提供统一的设备节点入口(预先设置好节点名称和可读写权限)
backlight_class->dev_groups = bl_device_groups;
// 监听系统的休眠唤醒回调
backlight_class->pm = &backlight_class_dev_pm_ops; // 初始化背光设备链表,用于被外部驱动查询获取
INIT_LIST_HEAD(&backlight_dev_list);
mutex_init(&backlight_dev_list_mutex); // 初始化内核通知链, 用于通知驱动层背光设备注册或卸载事件
BLOCKING_INIT_NOTIFIER_HEAD(&backlight_notifier); return 0;
}
ATTRIBUTE_GROUPS 宏定义解析:

直接搜索源码是找不到 bl_device_groups 关键词的,实际该变量是通过宏进行定义

static struct attribute *bl_device_attrs[] = {
&dev_attr_bl_power.attr,
&dev_attr_brightness.attr,
&dev_attr_actual_brightness.attr,
&dev_attr_max_brightness.attr,
&dev_attr_type.attr,
NULL,
};
ATTRIBUTE_GROUPS(bl_device);

宏定义:include\linux\sysfs.h

#define __ATTRIBUTE_GROUPS(_name)				\
static const struct attribute_group *_name##_groups[] = { \
&_name##_group, \
NULL, \
} #define ATTRIBUTE_GROUPS(_name) \
static const struct attribute_group _name##_group = { \
.attrs = _name##_attrs, \
}; \
__ATTRIBUTE_GROUPS(_name)

宏定义展开:ATTRIBUTE_GROUPS(bl_device)

#define __ATTRIBUTE_GROUPS(bl_device)				\
static const struct attribute_group *bl_device_groups[] = { \
&bl_device_group, \
NULL, \
} #define ATTRIBUTE_GROUPS(bl_device) \
static const struct attribute_group bl_device_group = { \
.attrs = bl_device_attrs, \
}; \
__ATTRIBUTE_GROUPS(bl_device)

宏替换后的效果

static struct attribute *bl_device_attrs[] = {
&dev_attr_bl_power.attr,
&dev_attr_brightness.attr,
&dev_attr_actual_brightness.attr,
&dev_attr_max_brightness.attr,
&dev_attr_type.attr,
NULL,
}; static const struct attribute_group bl_device_group = {
.attrs = bl_device_attrs,
}; static const struct attribute_group *bl_device_groups[] = {
&bl_device_group,
NULL,
};
DEVICE_ATTR_RW 宏定义解析:
static ssize_t brightness_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int rc;
struct backlight_device *bd = to_backlight_device(dev);
unsigned long brightness; rc = kstrtoul(buf, 0, &brightness);
if (rc)
return rc; rc = backlight_device_set_brightness(bd, brightness); return rc ? rc : count;
}
static DEVICE_ATTR_RW(brightness);

宏定义:include\linux\device.h include\linux\sysfs.h

#define DEVICE_ATTR_RW(_name) \
struct device_attribute dev_attr_##_name = __ATTR_RW(_name) #define __ATTR_RW(_name) __ATTR(_name, (S_IWUSR | S_IRUGO), \
_name##_show, _name##_store)

宏定义展开,取其中一个设备节点的例子:static DEVICE_ATTR_RW(brightness)

#define DEVICE_ATTR_RW(brightness) \
struct device_attribute dev_attr_brightness = __ATTR_RW(brightness) #define __ATTR_RW(brightness) __ATTR(brightness, (S_IWUSR | S_IRUGO), \
brightness_show, brightness_store) #define __ATTR(brightness, (S_IWUSR | S_IRUGO), brightness_show, brightness_store) { \
.attr = {.name = __stringify(brightness), \
.mode = VERIFY_OCTAL_PERMISSIONS((S_IWUSR | S_IRUGO)) }, \
.show = brightness_show, \
.store = brightness_store, \
}

宏替换后的效果

static struct device_attribute dev_attr_brightness = {
.attr = {
.name = __stringify(brightness),
.mode = VERIFY_OCTAL_PERMISSIONS((S_IWUSR | S_IRUGO))
},
.show = brightness_show,
.store = brightness_store,
}

二、背光设备驱动注册

假如 name=sunxi,那么调用此接口后将会产生如下几个设备节点:
背光设备类型:/sys/class/backlight/sunxi/type
背光电源控制:/sys/class/backlight/sunxi/bl_power
背光亮度设置:/sys/class/backlight/sunxi/brightness
最大背光亮度:/sys/class/backlight/sunxi/max_brightness
真实背光亮度:/sys/class/backlight/sunxi/actual_brightness

// name:背光设备名称	parent:父设备	devdata:私有数据	ops:背光控制调节的回调		props:默认的背光属性
struct backlight_device *backlight_device_register(const char *name, struct device *parent, void *devdata, const struct backlight_ops *ops, const struct backlight_properties *props)
{
struct backlight_device *new_bd;
int rc; // 创建背光设备
new_bd = kzalloc(sizeof(struct backlight_device), GFP_KERNEL);
if (!new_bd)
return ERR_PTR(-ENOMEM); mutex_init(&new_bd->update_lock);
mutex_init(&new_bd->ops_lock); // 设置设备逻辑类为背光设备逻辑类, 在驱动初始化时完成的创建
// 这里要注意, struct device 是直接嵌入到 struct backlight_device 里面的
new_bd->dev.class = backlight_class;
new_bd->dev.parent = parent;
new_bd->dev.release = bl_device_release; // 设置名称, 体现在: /sys/class/backlight/XXX
dev_set_name(&new_bd->dev, "%s", name);
dev_set_drvdata(&new_bd->dev, devdata); // 如果有指定的背光属性, 则拷贝并作为默认的背光属性
if (props) {
memcpy(&new_bd->props, props, sizeof(struct backlight_properties));
if (props->type <= 0 || props->type >= BACKLIGHT_TYPE_MAX) {
WARN(1, "%s: invalid backlight type", name);
new_bd->props.type = BACKLIGHT_RAW;
}
} else {
new_bd->props.type = BACKLIGHT_RAW;
} // 将此设备注册到系统里面,里面会创建 backlight_class 预设的那几个设备节点
rc = device_register(&new_bd->dev);
if (rc) {
put_device(&new_bd->dev);
return ERR_PTR(rc);
} // 注册监听 frambuffer 的事件通知链
rc = backlight_register_fb(new_bd);
if (rc) {
device_unregister(&new_bd->dev);
return ERR_PTR(rc);
} // 指定背光控制接口
new_bd->ops = ops; // 将此设备加入到链表内, 便于外部查询获取
mutex_lock(&backlight_dev_list_mutex);
list_add(&new_bd->entry, &backlight_dev_list);
mutex_unlock(&backlight_dev_list_mutex); // 发出事件通知, 有新的背光设备被注册到系统中
blocking_notifier_call_chain(&backlight_notifier, BACKLIGHT_REGISTERED, new_bd);
return new_bd;
}
EXPORT_SYMBOL(backlight_device_register);

三、应用层进行背光调节路径

代码解析
static ssize_t brightness_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int rc;
// 通过 dev 计算出 backlight_device 地址, 取得对应背光设备对象
struct backlight_device *bd = to_backlight_device(dev);
unsigned long brightness; // 字符串转换为数值
rc = kstrtoul(buf, 0, &brightness);
if (rc)
return rc; // 调用设置背光接口, 该接口也被开放给其它驱动程序调用
rc = backlight_device_set_brightness(bd, brightness); return rc ? rc : count;
}
static DEVICE_ATTR_RW(brightness); int backlight_device_set_brightness(struct backlight_device *bd,
unsigned long brightness)
{
int rc = -ENXIO; // 有多个路径调用, 存在并发调用, 借助互斥锁保护
mutex_lock(&bd->ops_lock);
// 检查是否设置了回调
if (bd->ops) {
// 检查所设置的背光数值是否超出最大值
if (brightness > bd->props.max_brightness)
rc = -EINVAL;
else {
// 填充要设置的背光值并更新
bd->props.brightness = brightness;
backlight_update_status(bd);
rc = 0;
}
}
mutex_unlock(&bd->ops_lock); backlight_generate_event(bd, BACKLIGHT_UPDATE_SYSFS); return rc;
}
EXPORT_SYMBOL(backlight_device_set_brightness); static inline int backlight_update_status(struct backlight_device *bd)
{
int ret = -ENOENT; // 从这里可以看出, 最终调用的背光设备驱动的 ops->update_status() 接口
mutex_lock(&bd->update_lock);
if (bd->ops && bd->ops->update_status)
ret = bd->ops->update_status(bd);
mutex_unlock(&bd->update_lock); return ret;
}
关键解析

这里最主要的是搞清楚是如何区分应用层操作哪个背光设备(这部分实现很有意思,其原理会另写文章解析)。

  1. Linux 最常用的是通过结构体嵌套的方式,实现以某个成员的内存地址计算出结构体的首地址,从而访问到其它的成员。
  2. struct device 是直接嵌入到 struct backlight_device 里面,就可以通过 struct device 找到对应 struct backlight_device。
  3. 应用层通过 /sys/class/backlight/xxx 来访问 xxx 背光设备,就可确定 device, 根据 device 找出 backlight_device,调用对应背光设备驱动的 ops 成员。
struct backlight_device {
......
struct device dev;
......
};
#define to_backlight_device(obj) container_of(obj, struct backlight_device, dev)

四、事件联动进行背光调节路径

在背光设备驱动注册的时候,就调用 backlight_register_fb 来监听 fb 事件。

Xorg 就通过 FBIOBLANK 指令实现熄屏,但若没有对应的背光设备接口,就会出现显示屏全黑但是背光还亮着的问题。

代码解析
static int backlight_register_fb(struct backlight_device *bd)
{
// 当有背光
memset(&bd->fb_notif, 0, sizeof(bd->fb_notif));
bd->fb_notif.notifier_call = fb_notifier_callback; return fb_register_client(&bd->fb_notif);
} // drivers\video\fbdev\core\fb_notify.c
int fb_register_client(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&fb_notifier_list, nb);
}
EXPORT_SYMBOL(fb_register_client); static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data)
{
struct backlight_device *bd;
struct fb_event *evdata = data;
int node = evdata->info->node;
int fb_blank = 0; // 仅对显示空白事件感兴趣
if (event != FB_EVENT_BLANK && event != FB_EVENT_CONBLANK)
return 0; // 一样的操作, 通过 device 找到 backlight_device
bd = container_of(self, struct backlight_device, fb_notif);
mutex_lock(&bd->ops_lock);
if (bd->ops)
if (!bd->ops->check_fb ||
bd->ops->check_fb(bd, evdata->info)) {
fb_blank = *(int *)evdata->data;
if (fb_blank == FB_BLANK_UNBLANK && !bd->fb_bl_on[node]) {
bd->fb_bl_on[node] = true;
if (!bd->use_count++) {
// 如果需要正常显示,则亮起背光
bd->props.state &= ~BL_CORE_FBBLANK;
bd->props.fb_blank = FB_BLANK_UNBLANK;
backlight_update_status(bd);
}
} else if (fb_blank != FB_BLANK_UNBLANK && bd->fb_bl_on[node]) {
bd->fb_bl_on[node] = false;
if (!(--bd->use_count)) {
// 如果显示空白画面,则熄灭背光
bd->props.state |= BL_CORE_FBBLANK;
bd->props.fb_blank = fb_blank;
backlight_update_status(bd);
}
}
}
mutex_unlock(&bd->ops_lock);
return 0;
}

五、最简单的背光设备驱动

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/backlight.h> static struct backlight_device *bdev = NULL; // 更新背光亮度
static int mybl_bl_ops_update_bl(struct backlight_device *bdev)
{
//...... return 0;
} // 获取背光亮度
static int mybl_bl_ops_get_brightness(struct backlight_device *bdev)
{
//...... return brightness;
} static const struct backlight_ops mybl_bl_ops = {
.update_status = mybl_bl_ops_update_bl,
.get_brightness = mybl_bl_ops_get_brightness,
}; static int mybl_probe(struct platform_device *pdev)
{
bdev = backlight_device_register("mydriver", &pdev->dev, NULL, &mybl_bl_ops, NULL);
if(IS_ERR(bdev)){
return -1;
}
return 0;
} static int mybl_remove(struct platform_device *pdev)
{
backlight_device_unregister(bdev);
return 0;
} static const struct of_device_id mybl_ids[] = {
{ .compatible = "mybl"},{}
}; static struct platform_driver mybl_driver = {
.probe = mybl_probe,
.remove = mybl_remove,
.driver = {
.owner = THIS_MODULE,
.name = "mybl",
.of_match_table = mybl_ids,
},
}; module_platform_driver(mybl_driver);
MODULE_LICENSE("GPL");

【分析笔记】Linux 4.9 backlight 子系统分析的更多相关文章

  1. Linux下的Backlight子系统(二)【转】

    转自:http://blog.csdn.net/weiqing1981127/article/details/8515847 版权所有,转载必须说明转自 http://my.csdn.net/weiq ...

  2. Linux下的Backlight子系统(一)【转】

    转自:http://blog.csdn.net/weiqing1981127/article/details/8511676 版权所有,转载必须说明转自 http://my.csdn.net/weiq ...

  3. Linux内核内存管理子系统分析【转】

    本文转载自:http://blog.csdn.net/coding__madman/article/details/51298718 版权声明:本文为博主原创文章,未经博主允许不得转载. 还是那张熟悉 ...

  4. 【分析笔记】NXP PCF85263 设备驱动分析笔记

    驱动移植 供应商无法提供相应的驱动程序,不过在 linux 最新的内核倒是有一份 pcf85363 的驱动,看代码并核对寄存器功能,是可以兼容 pcf85263 芯片.只是我们用的内核比较老 linu ...

  5. backlight 子系统(转载)

    http://blog.csdn.net/weiqing1981127/article/details/8511676   Linux下的Backlight子系统(一) http://blog.csd ...

  6. 【分析笔记】Linux input 子系统原理分析

    一.input 子系统简介 输入子系统主要用于支持各种输入设备,可大大简化这类设备驱动的开发难度.以下为个人的理解,可能不同的内核版本会略有差异,在这里分析的内核为 linux-4.9. 无论在 Li ...

  7. Linux input子系统分析

    输入输出是用户和产品交互的手段,因此输入驱动开发在Linux驱动开发中很常见.同时,input子系统的分层架构思想在Linux驱动设计中极具代表性和先进性,因此对Linux input子系统进行深入分 ...

  8. Linux kernel的中断子系统之(七):GIC代码分析

    返回目录:<ARM-Linux中断系统>. 总结: 原文地址:<linux kernel的中断子系统之(七):GIC代码分析> 参考代码:http://elixir.free- ...

  9. Linux内核分析第七周学习笔记——Linux内核如何装载和启动一个可执行程序

    Linux内核分析第七周学习笔记--Linux内核如何装载和启动一个可执行程序 zl + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study. ...

随机推荐

  1. cameralink base 接口双通道任意图像数据源模拟

    设备说明 PCIe-CLS2000是基于PCIe 接口的2通道 camera link base接口图像模拟源,适用于图像数据源模拟.接收处理平台测试等场景. PCIe Gen2x4/x8 接口,支持 ...

  2. C语言指针重点

    指针 指针与一维数组 万能公式 p[i] = *(p+i) = (i+p) = i[p] &p[i] == &((p+i))== p+i 指针与二维数组 二维数组万能公式: ((p+i ...

  3. mindxdl--common--validators.go

    // Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.// Package common this file ...

  4. 阿里技术专家详解 DDD 系列- Domain Primitive

    简介: 关于DDD的一系列文章,希望能继续在总结前人的基础上发扬光大DDD的思想,但是通过一套我认为合理的代码结构.框架和约束,来降低DDD的实践门槛,提升代码质量.可测试性.安全性.健壮性. 作者| ...

  5. 线程(Thread)基本用法

    一.线程的调用 1.无参 def run_01(): for i in range(6, 10): print("test01", i) time.sleep(1) th_01 = ...

  6. 关于sublime-build的配置详解

    前言 sublime-build 可以做很多自定义的构建命令,然后用其执行代码,十分方便! 开始 这里我就简单的用python 的配置来详细说明各个配置项目的作用 { "shell_cmd& ...

  7. On Java 8读书笔记

    第一章 什么是对象 1.1 抽象的历程 "对象":问题空间中的元素及其解决方案空间中的具体呈现. 理念即是通过添加各种新的对象,可以将程序改编为一种描述问题的语言. 对象是具有状态 ...

  8. SLM6500电磁干扰认证设计PCB

    SLM6500 是一款面向5V交充适配器的2A离子电池充电器.它是采用1.5MHz固定频率的步降压型转换器,利用芯片内部的功率晶体管电池进行涓流.恒流和恒压充电.充电电流可用外部电阻编程设定,持续充电 ...

  9. k8s篇-k8s集群架构及组件详解【史上最详细】

    O kubernetes简介 k8s是什么 k8s是一个可移植的.可扩展的开源平台,用于管理容器化的工作负载和服务,可以促进声明式配置和自动化. k8s能做什么 1)服务发现和负载均衡 Kuberne ...

  10. TypeScript 之 Interface

    Interface 描述:用来描述对象的形状,能够被继承 常用语法 ( Common Syntax ) 1. 描述普通对象 interface JsonResponse { version:numbe ...