Paper Title

Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

Basic algorithm and main steps

Basic ideas

The paper generalizes the determination of community structure via quality functions to multislice networks, and derive a null model in terms of stability of communities under Laplacian dynamics.

Derivation of the quality function

Restricted our attention to unipartite, undirected network slices \((A_{ijs}= A_{jis})\) and couplings $(C_{jrs} = C_{jsr}) $ .

$ \omega $: Slice coupling strengths.

$ A_{ijs} $ : at slice \(s\), the connection node \(i\) and node \(j\)

$ C_{jrs} $: the connection between slice \(r\) and slice \(s\)

$ k_{js} = \sum_i A_{ijs} $ : the degree / strength of the node $ j $ on slice $ s $

$ C_{js} = \sum_r C_{jsr} $ : the strength across slice $ s $

multiple strength : $ \kappa {js} = k + C_{js} $

The expected weight of the edge between $ i $ and $ j $ under Laplacian dynamics:

\[\dot{P_{is}} = \sum_{jr} \frac{(A_{ijs}\delta_{sr}+\delta_{ij}C_{jsr})p_{jjr}}{\kappa_{jr}} - p_{is}
\]

Using the steady-state probability distribution

$ p^*{jr} = \kappa / 2\mu , ( 2\mu = \sum_{jr} \kappa_{jr} ) $

$ \gamma_s $: revolution parameter

Conditional propability:

\[\rho_{is|js}P^*_{jr} = (\frac{k_{is}}{2m_s}\frac{k_jr}{\kappa_jr}\delta_{sr} + \frac{C_{jsr}}{C_{jr}} \frac{C_{jr}}{\kappa_{jr}} \delta_{ij}) \frac{\kappa_{jr}}{2 \mu}
\]

$ m_s = \sum_j k_{js} $

Quality function:

\[Q = \frac{1}{2\mu}\sum_{ijsr} \bigg[\bigg( A_{ijs} - \gamma_s \frac{k_{is} k_{js}}{2m_s}\bigg)\delta_{sr} + \delta_{ij}C_{jsr} \bigg]
\]

Recover null model

Recovered the standard null model for directed networks (with a resolution parameter) by generalizing the Laplacian dynamics to include motion along different kinds of connections, giving multiple resolution parameters and spreading weights.

Motivation

  • In terms of community detection, departed null models have not been available for time-dependent networks.
  • One solution: piece together the structures obtained at different times or have abandoned quality functions in favor of such alternatives as the Minimum

    Description Length principle.
  • Another solution: tensor decomposition, without qualtiy-function.

Contribution

  • Generalize the determination of community structure via quality functions to multislice networks, removing the limits.
  • Formulate a null model in terms of stability of communities under Laplacian dynamics.

My own idea

Some analysis

  • Fig 2 is the experiment result on the dataset of the Zachary Karate Club network. There is 34 nodes and 16 slices (with resolution parameters $\gamma_s $= { 0 . 25, 0 . 5 , …, 4 } and $\omega $= {0,0.1,1}). Other things being equal, the larger \(\gamma\) is, the more communities is. The $ \omega $ means tighter connections among time slices. The horizontal axis is $ \gamma $, and the vertical axis is the 34 members. For any one of the three pictures, the number of communities increases as the $\gamma $ increases. With $\omega $ = 0.1,1, with \(\gamma\) increasing, nodes assigned to the same may keep in the same communities or be partitioned to different communities. However, comparing to the ones with larger slice coupling strengths( the second and the third picture ), the one ignoring slice coupling ( the first picture, with $ \omega $ = 0 ) will lead to messy clustering results (eg. both the \(\gamma\) = 0.25 and the \(\gamma\) have two communities, but they are not the same two communities) . Therefore, taking slice coupling strengths into consideration can improve the performance of the community detection.

Confuse

  • What confuses me is the details of derivating the quality function.

Shortcoming

  • The paper lacks comparing the performance of their novel algorithm with others.

Others

  • I have learnt the null model and quality function of community detection in one dimesion, which is in the monority and restricted greatly. Through this paper, I know the methology in mutiscale and mutiplex networks.

    \[Q = \frac{1}{2m}\sum_{s \in S}\sum_{i, j \in s}(A_{ij} - \frac{k_i k_j}{2m}) =\\
    = \frac{1}{2m}\sum_{i, j}(A_{ij} - \frac{k_i k_j}{2m}) \delta(g_i,g_j)
    \]

    $ \delta(g_i, g_j )$ = 1 if nodes \(i\) and \(j\) are in the same communities and 0 otherwise.

  • Unfinished: reproduct the code and results.

【DM论文阅读杂记】复杂社区网络的更多相关文章

  1. 【CV论文阅读】生成式对抗网络GAN

    生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...

  2. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  3. [论文阅读]阿里DIEN深度兴趣进化网络之总体解读

    [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...

  4. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

  5. [论文阅读笔记] Community aware random walk for network embedding

    [论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...

  6. [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding

    [论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...

  7. [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion

    [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...

  8. 多目标跟踪:CVPR2019论文阅读

    多目标跟踪:CVPR2019论文阅读 Robust Multi-Modality Multi-Object Tracking  论文链接:https://arxiv.org/abs/1909.0385 ...

  9. 深度学*点云语义分割:CVPR2019论文阅读

    深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本 ...

  10. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

随机推荐

  1. eosio.cdt发布带来的变化

    change of version 1.3.x+,EOSIO.CDT After eos version 1.3.x, generation of cdt tools, Smart Contracts ...

  2. Python openpyxl使用教程

    1.安装 openpyxl 组件 pip install openpyxl -i https://mirrors.aliyun.com/pypi/simple/ 新建Excel # coding=ut ...

  3. Windows 10 企业版 LSTC 激活秘钥及方法

    Windows 10 企业版 LSTC 秘钥:M7XTQ-FN8P6-TTKYV-9D4CC-J462D 同时按下Win键+X,然后选择Windows PowerShell(管理员)按顺序输入下面的字 ...

  4. Error: EPERM: operation not permitted, mkdir ‘C:\Program Files\nodejs‘TypeError: Cannot read proper

    出现问题: 问题如题,出现场景:vscode运行npm命令 解决办法: 有的友友说安装nodejs时用管理员身份安装,右键没找到最后删掉了此文件即可. 这个文件缓存了之前的配置与现在安装的nodejs ...

  5. 基于 Hugging Face Datasets 和 Transformers 的图像相似性搜索

    基于 HuggingFace Datasets 和 Transformers 的图像相似性搜索 通过本文,你将学习使用 Transformers 构建图像相似性搜索系统.找出查询图像和潜在候选图像之间 ...

  6. 51nod 1675.序列变换

    序列变换 题目描述 \(lyk\) 有两序列 \(a\) 和 \(b\). \(lyk\) 想知道存在多少对 \(x,y\),满足以下两个条件. \(1:\gcd(x,y)=1\). \(2:a_{b ...

  7. pycharm取消代码长度的竖线

  8. crypto-gmsm国密算法库

    crypto-gmsm国密算法库 一.开发背景 crypto-gmsm国密算法库是国密商密算法(SM2,SM3,SM4)工具类封装,国产密码算法(国密算法)是指国家密码局认定的国产商用密码算法,目前主 ...

  9. 域名_服务器_IP之间的关系

    目的: 近期在搞A服务器和云服务器,以及正式环境的B服务器的时候,多次搞不清楚域名,IP的关系. 现在理解看来: IP 分为内网和外网的,以A为例,A是内网的IP,然后申请下来的外网IP是B(还真忘了 ...

  10. 你有了解过无服务器架构(Serverless)数据库吗?

    你有了解过无服务器架构(Serverless)数据库吗? 什么是Serverless呢?简单理解,Serverless 分为  FaaS 和 BaaS 两个部分,其中 FaaS 指的是函数即服务,Ba ...