Paper Title

Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

Basic algorithm and main steps

Basic ideas

The paper generalizes the determination of community structure via quality functions to multislice networks, and derive a null model in terms of stability of communities under Laplacian dynamics.

Derivation of the quality function

Restricted our attention to unipartite, undirected network slices \((A_{ijs}= A_{jis})\) and couplings $(C_{jrs} = C_{jsr}) $ .

$ \omega $: Slice coupling strengths.

$ A_{ijs} $ : at slice \(s\), the connection node \(i\) and node \(j\)

$ C_{jrs} $: the connection between slice \(r\) and slice \(s\)

$ k_{js} = \sum_i A_{ijs} $ : the degree / strength of the node $ j $ on slice $ s $

$ C_{js} = \sum_r C_{jsr} $ : the strength across slice $ s $

multiple strength : $ \kappa {js} = k + C_{js} $

The expected weight of the edge between $ i $ and $ j $ under Laplacian dynamics:

\[\dot{P_{is}} = \sum_{jr} \frac{(A_{ijs}\delta_{sr}+\delta_{ij}C_{jsr})p_{jjr}}{\kappa_{jr}} - p_{is}
\]

Using the steady-state probability distribution

$ p^*{jr} = \kappa / 2\mu , ( 2\mu = \sum_{jr} \kappa_{jr} ) $

$ \gamma_s $: revolution parameter

Conditional propability:

\[\rho_{is|js}P^*_{jr} = (\frac{k_{is}}{2m_s}\frac{k_jr}{\kappa_jr}\delta_{sr} + \frac{C_{jsr}}{C_{jr}} \frac{C_{jr}}{\kappa_{jr}} \delta_{ij}) \frac{\kappa_{jr}}{2 \mu}
\]

$ m_s = \sum_j k_{js} $

Quality function:

\[Q = \frac{1}{2\mu}\sum_{ijsr} \bigg[\bigg( A_{ijs} - \gamma_s \frac{k_{is} k_{js}}{2m_s}\bigg)\delta_{sr} + \delta_{ij}C_{jsr} \bigg]
\]

Recover null model

Recovered the standard null model for directed networks (with a resolution parameter) by generalizing the Laplacian dynamics to include motion along different kinds of connections, giving multiple resolution parameters and spreading weights.

Motivation

  • In terms of community detection, departed null models have not been available for time-dependent networks.
  • One solution: piece together the structures obtained at different times or have abandoned quality functions in favor of such alternatives as the Minimum

    Description Length principle.
  • Another solution: tensor decomposition, without qualtiy-function.

Contribution

  • Generalize the determination of community structure via quality functions to multislice networks, removing the limits.
  • Formulate a null model in terms of stability of communities under Laplacian dynamics.

My own idea

Some analysis

  • Fig 2 is the experiment result on the dataset of the Zachary Karate Club network. There is 34 nodes and 16 slices (with resolution parameters $\gamma_s $= { 0 . 25, 0 . 5 , …, 4 } and $\omega $= {0,0.1,1}). Other things being equal, the larger \(\gamma\) is, the more communities is. The $ \omega $ means tighter connections among time slices. The horizontal axis is $ \gamma $, and the vertical axis is the 34 members. For any one of the three pictures, the number of communities increases as the $\gamma $ increases. With $\omega $ = 0.1,1, with \(\gamma\) increasing, nodes assigned to the same may keep in the same communities or be partitioned to different communities. However, comparing to the ones with larger slice coupling strengths( the second and the third picture ), the one ignoring slice coupling ( the first picture, with $ \omega $ = 0 ) will lead to messy clustering results (eg. both the \(\gamma\) = 0.25 and the \(\gamma\) have two communities, but they are not the same two communities) . Therefore, taking slice coupling strengths into consideration can improve the performance of the community detection.

Confuse

  • What confuses me is the details of derivating the quality function.

Shortcoming

  • The paper lacks comparing the performance of their novel algorithm with others.

Others

  • I have learnt the null model and quality function of community detection in one dimesion, which is in the monority and restricted greatly. Through this paper, I know the methology in mutiscale and mutiplex networks.

    \[Q = \frac{1}{2m}\sum_{s \in S}\sum_{i, j \in s}(A_{ij} - \frac{k_i k_j}{2m}) =\\
    = \frac{1}{2m}\sum_{i, j}(A_{ij} - \frac{k_i k_j}{2m}) \delta(g_i,g_j)
    \]

    $ \delta(g_i, g_j )$ = 1 if nodes \(i\) and \(j\) are in the same communities and 0 otherwise.

  • Unfinished: reproduct the code and results.

【DM论文阅读杂记】复杂社区网络的更多相关文章

  1. 【CV论文阅读】生成式对抗网络GAN

    生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...

  2. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  3. [论文阅读]阿里DIEN深度兴趣进化网络之总体解读

    [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...

  4. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

  5. [论文阅读笔记] Community aware random walk for network embedding

    [论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...

  6. [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding

    [论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...

  7. [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion

    [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...

  8. 多目标跟踪:CVPR2019论文阅读

    多目标跟踪:CVPR2019论文阅读 Robust Multi-Modality Multi-Object Tracking  论文链接:https://arxiv.org/abs/1909.0385 ...

  9. 深度学*点云语义分割:CVPR2019论文阅读

    深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本 ...

  10. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

随机推荐

  1. Unity之UGUI鼠标进入离开&&拖拽实现

    Unity之UGUI鼠标进入离开&&拖拽实现 前言: __小黑最近在写项目的时候就有个疑惑,UGUI中的Button组件,他的点击事件是怎么实现的!?我们自己能不能写一个!?之后在项目 ...

  2. ASP.NET6 + Mongo + OData

    准备工作 Docker环境 Mongo数据库 配置Mongo数据库 ASP.NET6 集成Mongo 安装MongoDB.Driver { "Logging": { "L ...

  3. windows10、windows server 2016激活方法

    1.激活准备 管理员打开cmd命令窗口(或者Windows+X组合键选择下图标注选项),复制对应版本命令回车即可 2.激活命令: 2.1 win 10 专业版 slmgr /ipk W269N-WFG ...

  4. 学习Java Day 5

    今天看视频学习了一下eclipse的使用方法,解决了昨天运行不了的结果,并尝试了一下java的输入:

  5. EPICS Archiver Appliance的定制部署1

    https://blog.csdn.net/weixin_43767046/article/details/112116112 简单部署试了一下之后,又试了下Site specific install ...

  6. 【译】.NET 7 中的性能改进(一)

    原文 | Stephen Toub 翻译 | 郑子铭 一年前,我发布了.NET 6 中的性能改进,紧接着是.NET 5..NET Core 3.0..NET Core 2.1和.NET Core 2. ...

  7. Diffusers中基于Stable Diffusion的哪些图像操作

    目录 辅助函数 Text-To-Image Image-To-Image In-painting Upscale Instruct-Pix2Pix 基于Stable Diffusion的哪些图像操作们 ...

  8. 如何获取win10用户最高权限

    第五步,在(输入对象名称)方框中输入"System Managed Accounts Group",再点击"检查名称" 转载: 百度经验:     https: ...

  9. 彰显个性│github 和 gitlab 之自定义首页样式

    目录 个性首页 制作步骤 修改内容 个性首页 相信很多小伙伴在逛 github 和 gitlab 的时候 会发现很多开发者的首页异常的炫酷,如 https://github.com/autofelix ...

  10. 【PyCharm】配置 Git

    一.前提条件 本地先安装好:PyCharm 和 Git 二.操作步骤 1.打开 File -> Settings -> Version Control -> Git,在 Path t ...