Pytorch实战学习(六):基础CNN
《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili
Basic Convolution Neural Network
1、全连接网络
线性层串行—全连接网络
每一个输入和输出都有权重--全连接层
全连接网络在处理图像时,直接将每一行像素拼接成向量,丧失了图像的空间结构
2、CNN结构
CNN在处理图像时,保留了图像的空间结构信息
卷积神经网络:卷积运算(特征提取)à转换成向量à全连接网络(分类)
3、卷积过程
1×28×28是C(channle)×W(width)×H(Hight),就是通道数×图像宽度×图像高度
①单通道卷积(矩阵数乘)
②三通道卷积
③N通道卷积
每一个卷积核的通道数量 = 输入的通道数量
卷积核的个数 = 输出的通道数量
4、下采样(subsampling)---Max Pooling
下采样的目的是减少特征图像的数据量,降低运算需求。在下采样过程中,通道数(Channel)保持不变,图像的宽度和高度发生改变
5、全连接层
先将原先多维的卷积结果通过全连接层转为一维的向量,再通过多层全连接层将原向量转变为可供输出的向量。
卷积和下采样都是在特征提取
全连接层才是分类
6、CNN
①卷积操作
Pytorch输入数据必须是小批量数据,设置batch_size
需要确定的值:输入的通道(in_channels)、输出的通道(out_channels)、卷积核的大小(kernel_size:3x3)
②Padding,向外填充
③Stride—步长
有效降低图像的宽度和高度
④下采样:Max Pooling Layer
默认Stride=2
⑤整体结构
⑥用CPU或GPU进行模型的训练和测试
torch.device
完整代码
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim # prepare dataset batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) # design model using class class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10) def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # -1 此处自动算出的是320
x = self.fc(x) return x model = Net()
## Device—选择是用GPU还是用CPU训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device) # construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # training cycle forward, backward, update def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad() outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step() running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0 def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100*correct/total)) if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
运行结果
Pytorch实战学习(六):基础CNN的更多相关文章
- Java学习 (六)基础篇 类型转换
类型转换 由于Java是强类型语言,所以要进行有些运算的时候,需要用到类型转换 字节大小(容量)-> 低--------------------------------------------- ...
- 深度学习之PyTorch实战(1)——基础学习及搭建环境
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- Spring实战第六章学习笔记————渲染Web视图
Spring实战第六章学习笔记----渲染Web视图 理解视图解析 在之前所编写的控制器方法都没有直接产生浏览器所需的HTML.这些方法只是将一些数据传入到模型中然后再将模型传递给一个用来渲染的视图. ...
- 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...
- 参考《深度学习之PyTorch实战计算机视觉》PDF
计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...
- 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...
- Docker虚拟化实战学习——基础篇(转)
Docker虚拟化实战学习——基础篇 2018年05月26日 02:17:24 北纬34度停留 阅读数:773更多 个人分类: Docker Docker虚拟化实战和企业案例演练 深入剖析虚拟化技 ...
- Pytorch_第六篇_深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数
深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习 ...
- PyTorch 实战:计算 Wasserstein 距离
PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...
随机推荐
- 普冉PY32系列(四) PY32F002/003/030的时钟设置
目录 普冉PY32系列(一) PY32F0系列32位Cortex M0+ MCU简介 普冉PY32系列(二) Ubuntu GCC Toolchain和VSCode开发环境 普冉PY32系列(三) P ...
- rust 模块、路径、项目类型等相关内容
rust 模块路径 转载 https://blog.csdn.net/wowotuo/article/details/107591501 rust 项目编译类型 转载 https://blog.51c ...
- Seal 0.4 发布:软件供应链安全洞察更上一层楼!
今天,我们很高兴宣布 Seal 0.4 已正式发布!在上一个版本中,Seal 完成了从单一产品到全链路平台的转变,通过全局视图帮助用户掌握软件开发生命周期各个环节的安全状况. 在 Seal 0.4 中 ...
- P5_认识小程序项目的基本组成结构
项目结构 了解项目的基本组成结构 pages 用来存放所有小程序的页面 utils 用来存放工具性质的模块(例如:格式化时间的自定义模块) app.js 小程序项目的入口文件 app.json 小程序 ...
- JZOJ 1078. 【GDOI2006】The Kth Element
\(\text{Problem}\) 给定一个整数序列 \(a[1..N]\),定义 \(sum[i][j]=a[i]+a[i+1]+...+a[j]\),将所有的 \(sum[i][j]\) 从小到 ...
- LG P4146 序列终结者
\(\text{Problem}\) 支持区间加区间翻转区间最大值 \(\text{Solution}\) \(\text{FHQ-Treap}\) 两个标记加与翻转 然后维护区间最大值 \(\tex ...
- JZOJ 3494. 【NOIP2013模拟联考13】线段(segment)
题目 数轴上有很多单位线段,一开始时所有单位线段的权值都是 \(1\).有两种操作,第一种操作将某一区间内的单位线段权值乘以 \(w\),第二种操作将某一区间内的单位线段权值取 \(w\) 次幂.并且 ...
- Oracle中的sql脚本语言中的循环语句介绍
--sql脚本语言的循环介绍:--1.goto循环点.declare x number;begin x:=0;--变量初始化: <<repeat_loop>>--设置循环 ...
- 制造业常用KPI
1. 质量KPI CA (Capability of Accuracy): 平均值距离期望中心值的距离,值越大,说明平均值越接近期望中心值. Ca=(X-U)/(T/2) CP (Capabilit ...
- 银河麒麟服务器V10-SP2安装tomcat
1.首先先去tomcat官网下载一个安装包 2.创建一个存放压缩包的文件夹,并考入文件 3.解压tomcat压缩包 命令: tar -xvf 压缩包名 4.启动tomcat 进入apache-tomc ...