Pytorch实战学习(六):基础CNN
《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili
Basic Convolution Neural Network
1、全连接网络
线性层串行—全连接网络
每一个输入和输出都有权重--全连接层
全连接网络在处理图像时,直接将每一行像素拼接成向量,丧失了图像的空间结构
2、CNN结构
CNN在处理图像时,保留了图像的空间结构信息
卷积神经网络:卷积运算(特征提取)à转换成向量à全连接网络(分类)
3、卷积过程
1×28×28是C(channle)×W(width)×H(Hight),就是通道数×图像宽度×图像高度
①单通道卷积(矩阵数乘)
②三通道卷积
③N通道卷积
每一个卷积核的通道数量 = 输入的通道数量
卷积核的个数 = 输出的通道数量
4、下采样(subsampling)---Max Pooling
下采样的目的是减少特征图像的数据量,降低运算需求。在下采样过程中,通道数(Channel)保持不变,图像的宽度和高度发生改变
5、全连接层
先将原先多维的卷积结果通过全连接层转为一维的向量,再通过多层全连接层将原向量转变为可供输出的向量。
卷积和下采样都是在特征提取
全连接层才是分类
6、CNN
①卷积操作
Pytorch输入数据必须是小批量数据,设置batch_size
需要确定的值:输入的通道(in_channels)、输出的通道(out_channels)、卷积核的大小(kernel_size:3x3)
②Padding,向外填充
③Stride—步长
有效降低图像的宽度和高度
④下采样:Max Pooling Layer
默认Stride=2
⑤整体结构
⑥用CPU或GPU进行模型的训练和测试
torch.device
完整代码
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim # prepare dataset batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) # design model using class class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10) def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # -1 此处自动算出的是320
x = self.fc(x) return x model = Net()
## Device—选择是用GPU还是用CPU训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device) # construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # training cycle forward, backward, update def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad() outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step() running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.0 def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100*correct/total)) if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
运行结果
Pytorch实战学习(六):基础CNN的更多相关文章
- Java学习 (六)基础篇 类型转换
类型转换 由于Java是强类型语言,所以要进行有些运算的时候,需要用到类型转换 字节大小(容量)-> 低--------------------------------------------- ...
- 深度学习之PyTorch实战(1)——基础学习及搭建环境
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- Spring实战第六章学习笔记————渲染Web视图
Spring实战第六章学习笔记----渲染Web视图 理解视图解析 在之前所编写的控制器方法都没有直接产生浏览器所需的HTML.这些方法只是将一些数据传入到模型中然后再将模型传递给一个用来渲染的视图. ...
- 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...
- 参考《深度学习之PyTorch实战计算机视觉》PDF
计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...
- 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...
- Docker虚拟化实战学习——基础篇(转)
Docker虚拟化实战学习——基础篇 2018年05月26日 02:17:24 北纬34度停留 阅读数:773更多 个人分类: Docker Docker虚拟化实战和企业案例演练 深入剖析虚拟化技 ...
- Pytorch_第六篇_深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数
深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [1]---监督学习和无监督学习 ...
- PyTorch 实战:计算 Wasserstein 距离
PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...
随机推荐
- linux09-分区挂载
1.Linux分区简要介绍 Linux来说无论有几个分区,分给哪一目录使用,它归根结底就只有一个根目录,一个独立且唯一的文件结构 , Linux中每个分区都是用来组成整个文件系统的一部分. Linux ...
- JAVA虚拟机14 类加载器
1.简介 Java虚拟机设计团队有意把类加载阶段中的"通过一个类的全限定名来获取描述该类的二进制字节流"这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的 ...
- C#通过OLEDB将DataTable写入Excel文件中
利用OLEDB将DataTable数据写入Excel文件中,如果数据量过多,执行效率很缓慢,大数据量不推荐使用此方法. /// <summary> /// 创建DataTable /// ...
- javascript的防抖与节流
一.节流 一段时间内只能触发一次,如果这段时间内触发多次事件,只有第一次生效会触发回调函数,一段时间过后才能再次触发(一定时间内只执行第一次) 应用场景 1.鼠标连续不断地触发某事件(如点击),只在单 ...
- 真·生产力「GitHub 热点速览」
这些工具真的能极大提高生产力,节约你的时间来自(摸)我(鱼)增(划)值(水).先别提 style2paints,你给它随意画个草图,就能给你一个能交付给甲方爸爸的成品插画.如果提升 30%-40% 传 ...
- 【KAWAKO】MNN-1.2.0版本交叉编译遇到的错误与解决方法
目录 在使用gcc-linaro-7.5.0-aarch64-linux-gnu.gcc-linaro-6.3.1-aarch64-linux-gnu交叉编译链对MNN1.2.0进行交叉编译的过程中, ...
- Prometheus&Alertmanager告警推送
前言 尽管可以通过可视化数据监控系统运行状态,但我们无法时刻关注系统运行,因此需要一些实时运行的工具能够辅助监控系统运行,当系统出现运行问题时,能够通知我们,以此确保系统稳定性,告警便是作为度量指标监 ...
- React Native学习笔记----React Native简介与环境安装
React Native 的基础是React, 是在 web 端非常流行的开源 UI 框架.要想掌握 React Native,先了解 React 框架本身是非常有帮助的. 一.什么是React Na ...
- cmd数字雨原代码
转自:https://www.xitongtiandi.net/wenzhang/xp/29290.html
- log 函数
什么是对数 对数用 log 符号来表示.根据底数的不同,log 可以变换成 lg.ln.lg 是以 10 为底的对数,ln 是以 e 为底的对数. logax=y,是一个以 a 为底,x 为真数的对数 ...