python face_recognition安装及各种应用
1.安装
首先,必须提前安装cmake、numpy、dlib,其中,由于博主所用的python版本是3.6.4(为了防止不兼容,所以用之前的版本),只能安装19.7.0及之前版本的dlib,所以直接pip install dlib会报错,需要pip install dlib==19.7.0
安装完预备库之后就可以直接pip install face_recognition
2.应用
(1)提取人脸
import face_recognition
from PIL import Image
image = face_recognition.load_image_file("1.jpg")
face_locations = face_recognition.face_locations(image) # top, right, bottom, left
#以下展示提取的人脸
for face_location in face_locations:
# Print the location of each face in this image
top, right, bottom, left = face_location
# You can access the actual face itself like this:
face_image = image[top:bottom, left:right]
pil_image = Image.fromarray(face_image)
pil_image.show()
(2)查找面部特征轮廓线
import face_recognition
from PIL import Image,ImageDraw
image = face_recognition.load_image_file("1.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)
#以下为展示轮廓线
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)
for face_landmarks in face_landmarks_list:
facial_features = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
]
for facial_feature in facial_features:
d.line(face_landmarks[facial_feature], width=5)
del d
pil_image.show()
(3)比较人脸
import face_recognition
known_image = face_recognition.load_image_file("known_person.jpg")
unknown_image = face_recognition.load_image_file("unknown.jpg")
biden_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
results = face_recognition.compare_faces([biden_encoding], unknown_encoding)
(4)同时识别多张人脸
①使用pillow库
#使用pillow库
import face_recognition
from PIL import Image, ImageDraw
# Load a second sample picture and learn how to recognize it.
first_image = face_recognition.load_image_file("3.jpg")
first_face_encoding = face_recognition.face_encodings(first_image)[0]
second_image = face_recognition.load_image_file("5.jpg")
second_face_encoding = face_recognition.face_encodings(second_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
first_face_encoding,
second_face_encoding
]
known_face_names = [
"first",
"second"
]
# Load an image with an unknown face
unknown_image = face_recognition.load_image_file("1.jpg")
# Find all the faces and face encodings in the unknown image
unknown_face_locations = face_recognition.face_locations(unknown_image)
unknown_face_encodings = face_recognition.face_encodings(unknown_image, unknown_face_locations)
pil_image = Image.fromarray(unknown_image)
# Create a Pillow ImageDraw Draw instance to draw with
draw = ImageDraw.Draw(pil_image)
# Loop through each face found in the unknown image
for (top, right, bottom, left), unknown_face_encoding in zip(unknown_face_locations, unknown_face_encodings):
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, unknown_face_encoding, tolerance=0.5)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
# Draw a box around the face using the Pillow module
draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255))
# Draw a label with a name below the face
text_width, text_height = draw.textsize(name)
draw.rectangle(((left, bottom-text_height-10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255))
draw.text((left+6, bottom-text_height-3), name, fill=(255, 255, 255, 255))
# Remove the drawing library from memory as per the Pillow docs
del draw
# Display the resulting image
pil_image.show()
②使用opencv库
#使用opencv库
import face_recognition
import cv2
# 人物名称的集合
known_face_names = ["first","second"]
face_locations = []
face_encodings = []
demo_names = []
process_this_demo = True
# 本地图像一
first_image = face_recognition.load_image_file("1.jpg")
first_encoding = face_recognition.face_encodings(first_image)[0]
# 本地图像二
second_image = face_recognition.load_image_file("5.jpg")
second_encoding = face_recognition.face_encodings(second_image)[0]
known_face_encodings = [first_encoding,second_encoding]
# demo
path = "7.jpg"
demo = cv2.imread(path)
demo_image = face_recognition.load_image_file(path)
demo_encodings = face_recognition.face_encodings(demo_image)
rgb_demo = demo[:, :, ::-1]
demo_face_locations = face_recognition.face_locations(rgb_demo)
for demo_encoding in demo_encodings:
# 默认为unknown
matches = face_recognition.compare_faces(known_face_encodings, demo_encoding,tolerance=0.5)
name = "unknown"
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
demo_names.append(name)
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(demo_face_locations, demo_names):
# Scale back up face locations since the demo we detected in was scaled to 1/4 size
# 矩形框
cv2.rectangle(demo, (left, top), (right, bottom), (0, 0, 255), thickness=1)
#加上标签
cv2.rectangle(demo, (left, bottom-15), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(demo, name, (left+5,bottom-3), font, 0.5, (255, 255, 255), 1 )
# Display
cv2.imshow("CJK's practice", demo)
cv2.waitKey(0)
cv2.destroyAllWindows()
(5)摄像头实时辨别人脸
import face_recognition
import cv2,time
video_capture = cv2.VideoCapture(0)
# 本地图像一
first_image = face_recognition.load_image_file("1.jpg")
first_face_encoding = face_recognition.face_encodings(first_image)[0]
# 本地图像二
second_image = face_recognition.load_image_file("3.jpg")
second_face_encoding = face_recognition.face_encodings(second_image)[0]
# 本地图片三
third_image = face_recognition.load_image_file("5.jpg")
third_face_encoding = face_recognition.face_encodings(third_image)[0]
# Create arrays of known face encodings and their names
# 脸部特征数据的集合
known_face_encodings = [
first_face_encoding,
second_face_encoding,
third_face_encoding
]
# 人物名称的集合
known_face_names = [
"first",
"second",
"third"
]
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# 读取摄像头画面
ret, frame = video_capture.read()
# 改变摄像头图像的大小,图像小,所做的计算就少
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# 根据encoding来判断是不是同一个人,是就输出true,不是为flase
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# 默认为unknown
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# 矩形框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
#加上标签
cv2.rectangle(frame, (left, bottom-15), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left+5, bottom-3), font, 1.0, (255, 255, 255), 1)
# Display
cv2.imshow('monitor', frame)
# 按Q退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
python face_recognition安装及各种应用的更多相关文章
- 手把手教你用1行代码实现人脸识别 --Python Face_recognition
环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 ...
- Python的安装和详细配置
Python是一种面向对象.解释型计算机程序设计语言.被认为是比较好的胶水语言.至于其他的,你可以去百度一下.本文仅介绍python的安装和配置,供刚入门的朋友快速搭建自己的学习和开发环境.本人欢迎大 ...
- python requests 安装
在 windows 系统下,只需要输入命令 pip install requests ,即可安装. 在 linux 系统下,只需要输入命令 sudo pip install requests ,即可 ...
- Python 的安装与配置(Windows)
Python2.7安装配置 python的官网地址:https://www.python.org/ 我这里下载的是python2.7.12版本的 下载后点击安装文件,直接点击下一步知道finally完 ...
- 初学python之安装Jupyter notebook
一开始安装python的时候,安装的是最新版的python3.6的最新版.而且怕出问题,选择的都是默认安装路径.以为这样总不会出什么问题.一开始确实这样,安装modgodb等一切顺利.然而在安装jup ...
- 转: python如何安装pip和easy_installer工具
原文地址: http://blog.chinaunix.net/uid-12014716-id-3859827.html 1.在以下地址下载最新的PIP安装文件:http://pypi.python. ...
- CentOS 6.5升级Python和安装IPython
<转自:http://www.noanylove.com/2014/10/centos-6-5-sheng-ji-python-he-an-zhuang-ipython/>自己常用.以做备 ...
- python Scrapy安装和介绍
python Scrapy安装和介绍 Windows7下安装1.执行easy_install Scrapy Centos6.5下安装 1.库文件安装yum install libxslt-devel ...
- window下从python开始安装科学计算环境
Numpy等Python科学计算包的安装与配置 参考: 1.下载并安装 http://www.jb51.net/article/61810.htm 1.安装easy_install,就是为了我们安装第 ...
随机推荐
- Apache DolphinScheduler ASF 孵化器毕业一周年,汇报来了!
不知不觉,Apache DolphinScheduler 已经从 Apache 软件基金会(以下简称 ASF)孵化器毕业一年啦! 北京时间 2021 年 4 月 9 日,ASF 官方宣布 Apache ...
- 【沥血整理】灰度(二值)图像重构算法及其应用(morphological reconstruction)。
不记得是怎么接触并最终研究这个课题的了,认识我的人都知道我是没有固定的研究对象的,一切看运气和当时的兴趣.本来研究完了就放在那里了,一直比较懒的去做总结,但是想一想似乎在网络上就没有看到关于这个方面的 ...
- 简单理解 Webpack,以及Web前端使用打包工具的原因
Java 中的模块 传统的前端开发就是 JS.HTML.CSS 三件套.Web 没有像 Java 一样拥有优秀的模块机制,就是类与类之间可以分装在不同的包下,不同包下的类互相引用时通过import导入 ...
- rcu stall 导致的hung 记录
synchronize_sched 也会在wait_rcu_gp 的长时间等待导致进入hung ,假设rcu没有及时执行的话, 另外,如果rcu积累到一定程度,内存自然就不足了,可能会oom. rcu ...
- 【Java】学习路径58-TCP聊天-双向发送实现
这一章内容比较复杂(乱) 重点在于解决利用TCP协议实现双向传输. 其余的细节(比如end)等,不需要太在意. 但是我也把折腾经历写出来了,如果大家和我遇到了类似的问题,下文可以提供一个参考. 目标: ...
- 【java】学习路线14-抽象类、多态
/*抽象类 abstractabstract class A{ }注意abstract类中不一定需要有abstract方法但是有abstract方法的类中,该类一定是abstract方法抽象类不 ...
- 7个自定义定时任务并发送消息至邮箱或企业微信案例(crontab和at)
前言 更好熟悉掌握at.crontab定时自定义任务用法. 实验at.crontab定时自定义任务运用场景案例. 作业.笔记需要. 定时计划任务相关命令及配置文件简要说明 at 工具 由包 at 提供 ...
- 第八十三篇:Vue购物车(四) 总价计算
好家伙, 1.总价计算 来了,又先是一波分析: 我们用一个计算属性amt 我们把item中被勾选的项用一个过滤器过滤器来 然后用一个循环相加,把商品的价格乘以商品的数量, 把这个总值返回出去, 然后组 ...
- ESP8266 NONOS SDK学习
一.概况 1.存储 ESP8266 带有 160 KB 的 RAM,其中 64 KB 为 iRAM,96 KB 为 dRAM.iRAM 进一步 分成两块:32 KB iRAM 块运行标有 IRAM_A ...
- KingbaseES V8R6单实例外部备份故障案例
案例说明: 在KingbaseES V8R6单实例环境,配置外部备份服务器使用sys_backup.sh物理备份时,出现以下"WAL segment xxx was not archived ...