【python】人脸识别
#coding:utf-8
# from __future__ import print_function
from time import time #有些步骤要计时,看每个步骤花多长时间
import logging #打印出来progress程序进展
import matplotlib.pyplot as plt #pyplot程序最后把我们预测出来的人脸打印出来,强大的绘图工具
from sklearn.cross_validation import train_test_split
from sklearn.datasets import fetch_lfw_people
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC
print(__doc__)
# Display progress logs on stdout
#打印程序进展的信息
logging.basicConfig(level=logging.INFO,format='%(asctime)s %(message)s') #这个等下可以不用了
#下载数据集,数据的参数可以参考文档
lfw_people = fetch_lfw_people(min_faces_per_person=70,resize=0.4) #
#下面介绍数据预处理和分类
#返回多少个图
n_samples,h,w = lfw_people.images.shape
#X是特征向量的矩阵,每一行是个实例,每一列是个特征值
X = lfw_people.data
#n_featers表示的就是维度
n_features = X.shape[1] #维度:每个人会提取多少的特征值
#提取每个实例对应每个人脸,目标分类标记,不同的人的身份
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0] #多少行,shape就是多少行,多少个人,多少类
print("Total dataset size:")
print("n_samples:%d" % n_samples) #实例的个数
print("n_features:%d" % n_features) #特征向量的维度
print("n_classes:%d" % n_classes) #总共有多少人
#下面开始拆分数据,分成训练集和测试集,有个现成的函数,通过调用train_test_split;来分成两部分
X_train,X_test,y_train,y_test = train_test_split(
X,y,test_size=0.25)
#数据降维,因为特征值的维度还是比较高
n_components = 150
print("Extracting the top %d eigenfaces from %d faces"
%(n_components,X_train.shape[0]))
t0 = time() #计算出打印每一步需要的时间
#经典算法,高维降低为低维的
pca = RandomizedPCA(n_components=n_components,whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))
#对于人脸的一张照片上提取的特征值名为eigenfaces
eigenfaces = pca.components_.reshape((n_components,h,w))
print("Projecting the inpyt data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train) #特征量中训练集所有的特征向量通过pca转换成更低维的矩阵
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))
print("Fitting the classifier to the training set")
t0 = time()
#param_grid把参数设置成了不同的值,C:权重;gamma:多少的特征点将被使用,因为我们不知道多少特征点最好,选择了不同的组合
param_grid = {'C':[1e3,5e3,1e4,5e4,1e5],
'gamma':[0.0001,0.0005,0.001,0.005,0.01,0.1],}
#把所有我们所列参数的组合都放在SVC里面进行计算,最后看出哪一组函数的表现度最好
clf = GridSearchCV(SVC(kernel='rbf',class_weight='auto'),param_grid)
#其实建模非常非常简单,主要是数据的预处理麻烦
clf = clf.fit(X_train_pca,y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)
#测试集预测看看准确率能到多少
print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))
print(classification_report(y_test,y_pred,target_names=target_names))
print(confusion_matrix(y_test,y_pred,labels=range(n_classes)))
#把数据可视化的可以看到,把需要打印的图打印出来
def plot_gallery(images,titles,h,w,n_row=3,n_col=4):
"""Helper function to plot a gallery of portraits"""
#在figure上建立一个图当背景
plt.figure(figsize=(1.8*n_col,2.4*n_row))
plt.subplots_adjust(bottom=0,left=.01,right=.99,top=.90,hspace=.35)
for i in range(n_row * n_col):
plt.subplot(n_row,n_col,i+1)
plt.imshow(images[i].reshape((h,w)),cmap=plt.cm.gray)
plt.title(titles[i],size=12)
plt.xticks(())
plt.yticks(())
#把预测的函数归类标签和实际函数归类标签,比如布什
def title(y_pred,y_test,target_names,i):
pred_name = target_names[y_pred[i]].rsplit(' ',1)[-1]
true_name = target_names[y_test[i]].rsplit(' ',1)[-1]
return 'predicted: %s\ntrue: %s'% (pred_name,true_name)
#把预测出来的人名存起来
prediction_titles = [title(y_pred,y_test,target_names,i)
for i in range(y_pred.shape[0])]
#
plot_gallery(X_test,prediction_titles,h,w)
eigenface_titles = ['eigenface %d' %i for i in range(eigenfaces.shape[0])]
#提取过特征向量之后的脸是什么样子
plot_gallery(eigenfaces,eigenface_titles,h,w)
plt.show()
【python】人脸识别的更多相关文章
- Python人脸识别最佳教材典范,40行代码搭建人脸识别系统!
Face Id是一款高端的人脸解锁软件,官方称:"在一百万张脸中识别出你的脸."百度.谷歌.腾讯等各大企业都花费数亿来鞭策人工智能的崛起,而实际的人脸识别技术是否有那么神奇? 绿帽 ...
- python人脸识别
需要掌握知识python,opencv和机器学习一类的基础 过一段时间代码上传github,本人菜j一个,虽然是我自己谢的,也有好多不懂,或者我这就是错误方向 链接:https://pan.baidu ...
- 【python人脸识别】使用opencv识别图片中的人脸
概述: OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库 为什么有OpenCV? 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1.研究 ...
- Python人脸识别 + 手机推送,老板来了你就会收到短信提示
- 总结几个简单好用的Python人脸识别算法
原文连接:https://mp.weixin.qq.com/s/3BgDld9hILPLCIlyysZs6Q 哈喽,大家好. 今天给大家总结几个简单.好用的人脸识别算法. 人脸识别是计算机视觉中比较常 ...
- OpenCV+python 人脸识别
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...
- 简单的 Python 人脸识别实例
案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread(' ...
- python人脸识别项目face-recognition
该项目基于Github上面的开源项目人脸识别face-recognition,主要是对图像和视频中的人脸进行识别,在开源项目给出的例子基础上对视频人脸识别的KNN算法进行了实现. 0x1 工程项目结构 ...
- python 人脸识别试水(一)
1.安装python,在这里我的版本是python 3.6 2.安装pycharm,我的版本是pycharm 2017 3.安装pip pip 版本10 4.安装 numpy :pip ins ...
- python 人脸识别
"""Performs face alignment and calculates L2 distance between the embeddings of image ...
随机推荐
- CF1278E Tests for problem D
不难发现为了逐步确定每个点于其相邻点的相交情况,那么我们只可能有两种逐步构造的方式:从根开始往下构造,以及从子树往根上构造.经过很久的尝试,我发现从根往下构造是一件很困难的事情,于是我们可以反过来考虑 ...
- AT2346 [ARC070B] No Need
这里介绍几种做法. 解法一 首先可以转化一下题意,\(\forall i\) 如果 \(i\) 不是可有可无的当且仅当不用 \(i\) 能拼出 \([K - a_i, K)\) 中的数. 基于观察可以 ...
- TCP和UDP的区别以及应用
TCP定义 传输控制协议 (Transmission Control Protocol).TCP协议是面向连接的通信协议,即传输数据之前,在发送端和接收端建立逻辑连接,然后再传输数据,它提供了两台计算 ...
- IIS部署.net core 的程序后,如何查看控制台的日志?
.net core 3.1 开发的web服务,本地开发的时候,双击运行 xxx.exe(.net core 3.1 发布后,文件夹里面有一个 .exe 文件,双击即可运行,会直接监听本地 xx端口测试 ...
- JS RegExp对象(正则表达式)
笔记整理自:廖雪峰老师的JS教程 正则表达式语法:https://www.runoob.com/regexp/regexp-tutorial.html 目录 创建方式 方式一 方式二 简单使用 判断正 ...
- Swift数组
数组的介绍 数组(Array)是一串有序的由相同类型元素构成的集合 数组中的集合元素是有序的,可以重复出现 Swift中的数组 swift数组类型是Array,是一个泛型集合 数组的初始化 数组分成: ...
- LVS调度算法总结
LVS 调试算法分为两种:静态方法和动态方法. 静态方法 RR:轮询 WRR:加权轮询 SH:源地址哈希,将来自于同一个IP地址的请求始终发往第一次挑中的RS,从而实现会话绑定 DH:目标地址哈希,第 ...
- HMS Core携手厦门大学打造AR增强现实技术
HMS Core AR Engine团队联手厦门大学信息学院,与专业学生面对面深度交流行业发展与前沿成果.双方共同编写行业知识教材,引导学生开发AR游戏实践,为未来AR.VR人才培养培育可复制的教学模 ...
- [LeetCode]1389. 按既定顺序创建目标数组
给你两个整数数组 nums 和 index.你需要按照以下规则创建目标数组: 目标数组 target 最初为空. 按从左到右的顺序依次读取 nums[i] 和 index[i],在 target 数组 ...
- Smartbi大数据在金融业的应用案例
我们平时听说的商业智能其实就是BI分析,它是一种提高企业智能化的手段和工具,既可以满足企业发展的需要,而且也可提高企业竞争力.思迈特软件Smartbi作为数据分析系统,受到了不少金融业客户的青睐.今天 ...