机器学习---kmeans聚类的python实现
"""
Name: study_kmeans.py
Author: KX-Lau
Time: 2020/11/6 16:59
Desc: 实现kmeans聚类
"""
import math
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
# -----------不使用sklearn实现kmeans聚类 -------------
class MyKmeans:
def __init__(self, k, n=50):
self.k = k # 聚类中心数k
self.n = n # 迭代次数
def fit(self, x, centers=None):
# 1. 随机选择K个点
if centers is None:
index = np.random.randint(low=0, high=len(x), size=self.k) # 随机生成数组, 每个数组元素从low到high的整数, 元素个数为size
centers = x[index]
inters = 0
while inters < self.n:
# 构造k个点的集合
points_set = {key: [] for key in range(self.k)}
# 2. 遍历所有点point, 将point放入最近的聚类中心的集合中
for point in x:
nearest_index = np.argmin(np.sum((centers - point) ** 2, axis=1) ** 0.5)
points_set[nearest_index].append(point)
# 3. 遍历每一个点集, 计算新的聚类中心
for i_k in range(self.k):
centers[i_k] = sum(points_set[i_k]) / len(points_set[i_k])
inters += 1
return points_set, centers
"""
iris中文名是鸢尾花卉数据集, 是一类多重变量分析的数据集.
包含150个样本, 分为3类(山鸢尾Setosa, 变色鸢尾Versicolor, 维吉尼亚鸢尾Virginica),
每个类别50个数据, 每个数据包含4个属性(花萼长度, 花萼宽度, 花瓣长度, 花瓣宽度).
"""
iris = datasets.load_iris()
data = iris['data'][:, :2]
print(type(data))
mk = MyKmeans(3)
point_sets, centers = mk.fit(data)
category1 = np.asarray(point_sets[0])
category2 = np.asarray(point_sets[1])
category3 = np.asarray(point_sets[2])
for i, p in enumerate(centers):
plt.scatter(p[0], p[1], s=200, marker='^', color='yellow', edgecolors='black')
plt.scatter(category1[:, 0], category1[:, 1], color='g')
plt.scatter(category2[:, 0], category2[:, 1], color='r')
plt.scatter(category3[:, 0], category3[:, 1], color='b')
plt.xlim(4, 8)
plt.ylim(1, 5)
plt.title('kmeans with k=3')
plt.show()
# -----------使用sklearn实现kmeans聚类 -------------
init = np.vstack([data[5], data[109], data[121]]) # 指定初始质心
kmeans = KMeans(n_clusters=3, init=init, max_iter=100).fit(data)
labels = kmeans.labels_
cluster_centers = kmeans.cluster_centers_
c1 = data[labels == 0]
c2 = data[labels == 1]
c3 = data[labels == 2]
print('cluster_centers', cluster_centers)
print('init', init)
plt.figure()
for i, p in enumerate(cluster_centers):
plt.scatter(p[0], p[1], color='yellow', edgecolors='black', s=200, marker='^')
plt.scatter(c1[:, 0], c1[:, 1], color='g')
plt.scatter(c2[:, 0], c2[:, 1], color='r')
plt.scatter(c3[:, 0], c3[:, 1], color='b')
plt.xlim(4, 8)
plt.ylim(1, 5)
plt.title('kmeans using sklearn with k=3')
plt.show()
机器学习---kmeans聚类的python实现的更多相关文章
- (转) K-Means聚类的Python实践
本文转自: http://python.jobbole.com/87343/ K-Means聚类的Python实践 2017/02/11 · 实践项目 · K-means, 机器学习 分享到:1 原文 ...
- Kmeans 聚类 及其python实现
主要参考 K-means 聚类算法及 python 代码实现 还有 <机器学习实战> 这本书,当然前面那个链接的也是参考这本书,懂原理,会用就行了. 1.概述 K-means ...
- K-means聚类的Python实现
生物信息学原理作业第五弹:K-means聚类的实现. 转载请保留出处! K-means聚类的Python实现 原理参考:K-means聚类(上) 数据是老师给的,二维,2 * 3800的数据.plot ...
- K-means聚类 的 Python 实现
K-means聚类 的 Python 实现 K-means聚类是一个聚类算法用来将 n 个点分成 k 个集群. 算法有3步: 1.初始化– K 个初始质心会被随机生成 2.分配 – K 集群通过关联到 ...
- Python数据科学手册-机器学习: k-means聚类/高斯混合模型
前面学习的无监督学习模型:降维 另一种无监督学习模型:聚类算法. 聚类算法直接冲数据的内在性质中学习最优的划分结果或者确定离散标签类型. 最简单最容易理解的聚类算法可能是 k-means聚类算法了. ...
- k-means聚类算法python实现
K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...
- 机器学习——KMeans聚类,KMeans原理,参数详解
0.聚类 聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法. 1.内在相似性的度量 聚类是根据数据 ...
- 机器学习-K-means聚类及算法实现(基于R语言)
K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k个聚类(用户划分.产品类别划分等)中. 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离. 算法实现 R语言 ...
- 机器学习--k-means聚类原理
“物以类聚,人以群分”, 所谓聚类就是将相似的元素分到一"类"(有时也被称为"簇"或"集合"), 簇内元素相似程度高, 簇间元素相似程度低. ...
随机推荐
- k8s集群Job负载 支持多个 Pod 可靠的并发执行,如何权衡利弊选择适合的并行计算模式?
k8s的Job负载 支持多个 Pod 可靠的并发执行,如何权衡利弊选择适合的并行计算模式? 简单聊聊你对工作负载Job的理解? Job 支持多个 Pod 可靠的并发执行,如何权衡利弊选择适合的并行计算 ...
- BadImageFormatException异常
访问页面时,抛出BadImageFormatException异常: 1.如果您的应用程序使用了 32 位组件,请确保该应用程序始终采用 32 位应用程序的运行方式. 如果应用程序项目的"平 ...
- 单循环链表(基于java语言)
public class CircleSinglyLinkList { private Node head; CircleSinglyLinkList(){ this.head = null; } C ...
- springWeb——Servlet
6.1.Servlet简介 servlet是sun公司开发动态web的一门技术 sum在这些API中提供了一个接口叫做:Servlet.开发的两个步骤: 编写一个类,实现Servlet接口 把开发好的 ...
- C# 杂七杂八知识点
本文源自在工作过程中一些比较容易混淆或者理解不太清晰的知识点进行整理备忘. sealed修饰符 当sealed关键字修饰类,该类不能被继承. 当sealed关键字修饰方法的时候,该方法不能在其子类中重 ...
- Grafana镜像在阿里云镜像站首发上线
阿里云镜像站体验官招募中, 在各大社区平台分享相关内容累计积分就可赢得Airpods耳机和移动硬盘等奖励,银牌体验官的奖励人数不设限哦.立即参与 简介 Grafana是一个跨平台的开源的度量分析和可视 ...
- HTTP 之 Content-Type
Content-Type,内容类型,一般是指网页中存在的Content-Type,用于定义网络文件的类型和网页的编码,决定文件接收方将以什么形式.什么编码读取这个文件,这就是经常看到一些Asp网页点击 ...
- 6月29日学习总结 Django自带的用户认证
Django自带的用户认证 我们在开发一个网站的时候,无可避免的要设计.实现网站的用户系统.此时我们需要实现包括但不限于用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. D ...
- vue自定义指令?
除核心指令之外的指令, 使用directive进行注册. 指令自定义钩子函数: bind, inserted, update, componentUpdated, unbind
- JQuery Validate验证插件自定义验证消息
// 自定义验证的方法,验证通过返回true,否则返回false(会显示错误消息) jQuery.validator.addMethod; // 定义验证的消息 jQuery.validator.fo ...