Codeforces Round #846 (Div. 2) A-E
A
题意
给 \(n\) 个正整数,找到三个数,使得他们的和为奇数,输出他们的下标。
题解
知识点:贪心。
找到三个奇数或者一个奇数两个偶数即可,其他情况无解。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
bool solve() {
int n;
cin >> n;
vector<int> v1, v2;
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
if (x & 1) v1.push_back(i);
else v2.push_back(i);
}
if (v1.size() >= 3) {
cout << "YES" << '\n';
cout << v1[0] << ' ' << v1[1] << ' ' << v1[2] << '\n';
}
else if (v1.size() >= 1 && v2.size() >= 2) {
cout << "YES" << '\n';
cout << v1[0] << ' ' << v2[0] << ' ' << v2[1] << '\n';
}
else return false;
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}
B
题意
给 \(n\) 个正整数 \(a_i\) 。选择一个 \(k>1\) ,随后将 \(a_i\) 分成 \(k\) 个连续非空段,使得每段的和 \(b_i\) 的最大公约数 \(\gcd(b_1,\cdots,b_k)\) 最大。
题解
知识点:数论,贪心。
对于任意 \(k\) 的任意划分有答案 \(\gcd(b_1,\cdots,b_k)\) ,根据 \(\gcd(a,b) = \gcd(a+b,b)\) ,即 \(a\) 和 \(b\) 的最大公因数一定也是 \(a+b\) 的因子,那么 \(\gcd(b_1+b_2,b_3,\cdots,b_k) \geq \gcd(b_1,\cdots,b_k)\) ,所以任意两段合并代替合并前的两段不会让答案变差,因此最好的情况一定出现在只分为两段的情况。
因此,我们只要求出 \(\max_\limits{1\leq i \leq n-1}\gcd(a[1,i],a[i+1,n])\) 即可。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll a[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i], a[i] += a[i - 1];
ll ans = 1;
for (int i = 1;i <= n - 1;i++) {
ans = max(ans, gcd(a[i], a[n] - a[i]));
}
cout << ans << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
C
题有问题。
D
题意
有一个数字 \(n \in[1,10^9]\) ,告诉你 \(n\) 的二进制位 \(1\) 的个数 \(cnt\)。
随后可以执行不超过 \(30\) 次操作:选择一个 \(x\) ,使得 \(n\) 减去 \(x\) ,得到新的 \(n\) 的二进制位 \(1\) 的个数 \(cnt\) 。
最后,你需要猜出 \(n\) 是多少。
题解
知识点:位运算,枚举。
由于 \(n\) 最多会有 \(30\) 个 \(1\) ,我们可以探测每一位是否为 \(1\) 。
具体的说,我们探测第 \(i\) 位是否为 \(1\) ,可以减去 \(2^{i-1}\) 。如果这位是 \(1\) ,那么新的个数 \(cnt' = cnt-1<cnt\) ,否则一定有 \(cnt'\geq cnt\) 。但是,这个结论的前提是,我们是对原本的 \(n\) 做减法。考虑到操作会改变 \(n\) ,因此我们第 \(i-1\) 位探测完后,第 \(i\) 位的探测减去的应该是 \(2^{i-1} - 2^{i-2}\) ,这样可以抵消上一次操作,等效于对原来的 \(n\) 减去 \(2^{i-1}\) 。
要注意的是,如果减的数超过 \(n\) 那么也会错,即我们不能探测超过 \(n\) 最高位二进制的数。为了防止超出,我们可以记录探测为 \(1\) 的位数 \(tot\) ,如果 \(tot = cnt\) 那么可以立刻停止,因为此时答案已经满足要求了。
时间复杂度 \(O(1)\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int query(int x) {
int cnt;
cout << "- " << x << endl;
cin >> cnt;
return cnt;
}
void answer(int n) {
cout << "! " << n << endl;
}
bool solve() {
int cnt;
cin >> cnt;
int ans = 0, tot = 0;
if (query(1) < cnt) ans += 1, tot++;
for (int i = 1;i < 30 && tot < cnt;i++) {
if (query((1 << i) - (1 << (i - 1))) < cnt) ans += 1 << i, tot++;
}
answer(ans);
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
E
题意
给定一个区间 \([L,R]\) ,求 \(\gcd(i,j)\) 的种类,其中 \(i,j\in[L,R]\) 。
题解
知识点:整除分块。
设 \(\gcd(i,j) = d\) 我们考虑讨论 \(d\) 的大小:
- 当 \(\left\lfloor \dfrac{R}{2} \right\rfloor + 1 \leq d\) ,那么对于最小的倍数 \(2d\) ,也一定有 \(2d > R\) , 所以不存在 \([L,R]\) 的数满足这个范围的 \(d\) 。
- 当 \(L \leq d \leq \left\lfloor \dfrac{R}{2} \right\rfloor\) ,我们一定可以构造 \(\gcd(d,2d) = d\) ,其中 \(L \leq d < 2d \leq R\) 。
- 当 \(d \leq L - 1\) ,我们尝试构造大于等于 \(L\) 的最小的一组数 \(L \leq d \cdot \left\lceil \dfrac{L}{d} \right\rceil < d \cdot \left( \left\lceil \dfrac{L}{d} \right\rceil +1\right)\) ,这两个数满足 \(d \cdot \left\lceil \dfrac{L}{d} \right\rceil < d \cdot \left( \left\lceil \dfrac{L}{d} \right\rceil +1\right) \leq R\) ,则 \(d\) 是合法的,否则一定不合法。
对于前两类我们可以轻易求出个数,但第三类,显然我们不可能一个一个枚举 \(d\in[1,L-1]\) 。
实际上,我们发现会存在许多连续区间的 \(d\) ,其 \(\left\lceil \dfrac{L}{d} \right\rceil\) 的值是一样的,大约有 \(\sqrt L\) 个。假设 \([l,r]\) 区间的 \(d\) 满足 \(\left\lceil \dfrac{L}{d} \right\rceil = \left\lceil \dfrac{L}{l} \right\rceil\) ,那么若 \(d\) 满足 \(l \leq d \leq \min \left(r,\left\lfloor \dfrac{R}{\left\lceil \dfrac{L}{d} \right\rceil + 1} \right\rfloor \right)\) 则构造的数不会超 \(R\) ,是合法的。
那么这个问题现在就变成一个整除分块问题,为了方便,我们把取上整都转化为取下整,即 \(\left\lceil \dfrac{L}{d} \right\rceil = \left\lfloor \dfrac{L-1}{d} \right\rfloor + 1\) 。已知左端点 \(l\) 和 \(\left\lfloor \dfrac{L-1}{l} \right\rceil = k\) ,求最大的右端点 \(r\) 满足 \(\left\lfloor \dfrac{L-1}{i} \right\rfloor = k,i \in [l,r]\) 。为了在 \(l\) 的基础上将 \(i\) 向上逼近,我们将整除等式转化一个不等式 \(i \cdot k \leq L-1\) , \(r\) 即为 \(i\) 的最大值 \(\left\lfloor \dfrac{L-1}{k} \right\rfloor\) 。
现在我们就可以从 \(d = 1\) 开始枚举,每次可以枚举一个区间。
时间复杂度 \(O(\sqrt{L})\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
bool solve() {
ll L, R;
cin >> L >> R;
ll ans = max(0LL, R / 2 - L + 1);
for (int l = 1, r;l < L;l = r + 1) {
int k = (L - 1) / l;
r = (L - 1) / k;
ans += max(0LL, min((ll)r, R / (k + 2)) - l + 1);
}
cout << ans << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
Codeforces Round #846 (Div. 2) A-E的更多相关文章
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
- Codeforces Round #268 (Div. 2) ABCD
CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...
- 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts
题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...
随机推荐
- 【原创】在RT1050 LittleVgl GUI中嵌入中文输入法框架
时隔一年多终于又冒泡了,哎,随着工作越来越忙,自己踏实坐下来写点东西真是越来越费劲,这篇文章也是准备了好久好久才打算发表出来(不瞒大家,东西做完好久了,文章憋了一年了,当真"高产" ...
- Azure DevOps Server 入门实践与安装部署
一,引言 最近一段时间,公司希望在自己的服务器上安装本地版的 Azure DevOps Service(Azure DevOps Server),用于项目内的测试,学习.本着学习的目的,我也就开始学习 ...
- 这篇关于Oracle内存管理方式的介绍太棒了!我必须要转发,很全面。哈哈~
"Oracle内存管理可分为两大类,自动内存管理和手动内存管理.其中手动内存管理又可分为自动共享内存管理,手动共享内存管理,自动PGA内存管理以及手动PGA内存管理.本文会简单的介绍不同的内 ...
- WIN10使用SSH连接VMWare16 Pro的CentOS8.4(保姆级)
目录 本机环境 配置连接 本机环境 连接工具用的是MobaXterm,下载地址https://mobaxterm.mobatek.net/download.html VMWare16 Pro Cent ...
- 关于tomcat8在windows2008下高并发下有关问题的解决方案
关于tomcat8在windows2008下高并发下问题的解决方案 因为客户服务器特殊的环境问题,只能使用windows2008r2服务器,然而配置过后,网站的高访问量很快就出现了各种问题,以下是解决 ...
- day20 关联查询与多表联查 & 子查询与union联合查询 & 数据库定义语言DDL
day20 关联查询 #左连接:表名 left join 表名 以左表为主表,只显示与左表能匹配的行 SELECT s.*,q.* FROM student AS s LEFT JOIN queue_ ...
- 【每日一题】【第n个 n-->0】19./NC53 【删除】链表的倒数第 N 个结点-211123/220127
给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点. 答案: import java.util.*; /* * public class ListNode { * int val; * ...
- 【JVM调优】Day04:总结前三日内容(GC+算法*4+简单回收器*3三色标记,CMS+G1+ZGC,参数个数+OOM+调优参数)
- 【每日一题】【比较中右,内部比较中右,注意边界带>=】2021年11月2日-搜索旋转排序数组-211102/220211
[某下标处进行了旋转]整数数组 nums 按升序排列,数组中的值 互不相同 . 在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋 ...
- mooc上的简单题,(疑惑已解决)
如题,在简单不过的题,在自己编译器上试了很多例子,输出结果都对.但是oj不给过:(已解决) 统计指定单词出现的次数(10分) 题目内容:输入6个单词,查找第6个单词在前5个单词中出现的次数. 输入:6 ...