LCM性质 + 组合数 - HDU 5407 CRB and Candies
题目描述
给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6)。题目链接
解题思路
很有趣的一道数论题!
看了下网上别人的做法,什么Kummer定理我还真没听说过,仔细研究一下那个鬼定理真是涨姿势了!
然而这题我并不是用Kummer那货搞的(what?).
其实这题真的很简单(不要打我),为什么这样说呢?看了下面的解释你就知道我没骗你。
首先我们看一下这个式子:LCM(C(n,0),C(n,1),C(n,2)...C(n,n))
当时我的第一感觉是:晕,还是打个表吧!结果,打表程序后台打了四个半小时也没打完=.=(时间复杂度算错了)
做这题首先你得知道这个(基本常识):
求多个数的最小公倍数,有两种方法:
1)分解质因数法
先把这几个数分解质因数,再把它们一切公有的质因数和其中几个数公有的质因数以及每个数的独有的质因数全部连乘起来,所得的积就是它们的最小公倍数。
例如,求LCM[12,18,20,60]
因为12=(2)×[2]×[3],18=(2)×[3]×3,20=(2)×[2]×{5},60=(2)×[2]×[3]×{5}
其中四个数的公有的质因数为2(小括号中的数),
三个数的公有的质因数为2与3[中括号中的数],
两个数的公有的质因数为5{大括号中的数},
每个数独有的质因数为3。
所以,[12,18,20,60]=2×2×3×3×5=180。
2)公式法
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。
即(a,b)×[a,b]=a×b。
所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20]
即得[18,20]=18×20÷(18,20)=18×20÷2=180。
求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,
再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。
最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。
知道这个后,做这题选择哪种方法呢?
如果选择第二种方法,恭喜你,你绝壁和我一样想到打表滚粗!
既然第二种方法不行,肯定只能是第一种方法了。
那么要怎么做呢?
首先我们来看,对于组合数C(n,m),可以有如下变换:
C(n,m)=n!/[(n-m)!*m!]=n*(n-1)*(n-2)*....(m+1) / (n-m)!
这一步应该没问题吧!
也就是:C(n,m)=n!/[(n-m)!*m!]=n*(n-1)*(n-2)*....(m+1) / (n-m)! = n*(n-1)*(n-2)*....(m+1)/1/2/3/4/5/..../(n-m)
我们把前后结合一下,边乘边除:
对于第k步,就相当于*(n+1-k)且/k,k={1,2,...n-m}.
我们以n=8为例:
C(8,0)=1
C(8,1)=8*7*6*5*4*3*2 /7/6/5/4/3/2/1
C(8,2)=8*7*6*5*4*3 /6/5/4/3/2/1
C(8,3)=8*7*6*5*4 /5/4/3/2/1
C(8,4)=8*7*6*5 /4/3/2/1
C(8,5)=8*7*6 /3/2/1
C(8,6)=8*7 /2/1
C(8,7)=8 /1
C(8,8)=1
结合求n个数的LCM的方法,我们将问题转换成:
找i个数共有的质数,然后相乘就可,i={1,2,..n}。
好了,你可能会说:*$#@*@,找i个数共有的质数难道不超时,而且你的代码里连一个0~n的for循环都没有,你在逗我?
不急,看下面:
首先我们明确一点,C(n,k)的最大质因数是不会大于n的。
那么对于一个质数p来说,他对"n个数的LCM"的贡献在哪?
是不是就是p^1,p^2,p^3...中的一些?
哪些呢?
前面求组合数中,我们把C(n,m)分成了分子和分母来看。
如果p^x能够整除(n-1+k),那么他有可能是满足的,但是还不够,还要看是不是会被分母抵消掉。
只有p^x满足(n-1+k)%(p^x)==0且满足k%(p^x)!=0,这个p^x才是满足的,也就是对答案才有贡献,此时ans需要乘以p。
最后一步,约约分可能会更方便:把分子分母合一下,变成了:(n-1)%(p^x)!=0,表示(n-1+k)%(p^x)==0和k%(p^x)!=0不是同时出现的,此时才满足。
OK,推导完毕。
最终方法就是:
先筛出1e6以内的所有素数p,然后判断(n-1)%(p^x)是否!=0,是的话,ans*=p。
时间复杂度
O(p_num*sqrt(n))
代码
/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-08-21-15.17
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define mod 1000000007
#define LL long long
#define ULL unsigned long long
using namespace std;
const int NN=;
bool v[NN];
int p[NN],num;
void makePrime(){
int i,j;
num=-;
for(i=; i<NN; ++i){
if(!v[i]) p[++num]=i;
for(j=; j<=num && i*p[j]<NN; ++j){
v[i*p[j]]=true;
if(i%p[j]==) break;
}
}
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie();
makePrime();
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
LL ans=;
for(int i=; i<=num; ++i){
for(LL t=p[i]; t<=n; t*=p[i]){
if((n+)%t!=)
ans=ans*p[i]%mod;
}
}
printf("%lld\n",ans);
}
return ;
}
LCM性质 + 组合数 - HDU 5407 CRB and Candies的更多相关文章
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- HDU 5407 CRB and Candies
题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...
- 数论 HDOJ 5407 CRB and Candies
题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...
- HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...
- CRB and Candies LCM 性质
题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...
随机推荐
- HTML文档声明
前面的话 HTML文档通常以类型声明开始,该声明将帮助浏览器确定其尝试解析和显示的HTML文档类型.本文将详细介绍文档声明DOCTYPE 特点 文档声明必须是HTML文档的第一行.且顶格显示, ...
- NET Core-学习笔记(三)
这里将要和大家分享的是学习总结第三篇:首先感慨一下这周跟随netcore官网学习是遇到的一些问题: a.官网的英文版教程使用的部分nuget包和我当时安装的最新包版本不一致,所以没法按照教材上给出的列 ...
- 【原创经验分享】WCF之消息队列
最近都在鼓捣这个WCF,因为看到说WCF比WebService功能要强大许多,另外也看了一些公司的招聘信息,貌似一些中.高级的程序员招聘,都有提及到WCF这一块,所以,自己也关心关心一下,虽然目前工作 ...
- 玩转spring boot——结合JPA事务
接着上篇 一.准备工作 修改pom.xml文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=&q ...
- Node.js npm 详解
一.npm简介 安装npm请阅读我之前的文章Hello Node中npm安装那一部分,不过只介绍了linux平台,如果是其它平台,有前辈写了更加详细的介绍. npm的全称:Node Package M ...
- const let,console.log('a',a)跟console.log('a'+a)的区别
const 创建一个只读的常量 let块级作用域 const let重复赋值都会报错 console.log('a',a) a console.log('a'+a) a2 逗号的值会有空格:用加号的值 ...
- MySQL: Fabric 搭建 HA
搭建好Fabric之后,就可以在它的基础上创建HA Group. Shard Group.HA+Shard Group等.这里来说明一下如何快速的搭建HA环境. Fabric 192.168.2.23 ...
- linux压力测试工具stress
最近给PASS平台添加autoscaling的功能,根据服务器的负载情况autoscaling,为了测试这项功能用到了stress这个压力测试工具,这个工具相当好用了.具体安装方式就不说了.记录下这个 ...
- 分享一款自己改进的皮肤“verdant”.
- -!我总觉得我不应该这个样子了,这是个不好的习惯,面对博客,我每周或者每个月都会有审美疲劳,然后又写一个皮肤模板,不停的循环,至今都写了好多好多了,都记不清了,汗... 下面是我这今天审美疲劳写的 ...
- 我的MYSQL学习心得(十二) 触发器
我的MYSQL学习心得(十二) 触发器 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数 ...