1.链接地址:

http://bailian.openjudge.cn/practice/1191/

http://poj.org/problem?id=1191

2.题目:

总时间限制:
1000ms
内存限制:
65536kB
描述
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
均方差,其中平均值,xi为第i块矩形棋盘的总分。
请编程对给出的棋盘及n,求出O'的最小值。
输入
第1行为一个整数n(1 < n < 15)。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
输出
仅一个数,为O'(四舍五入精确到小数点后三位)。
样例输入
3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3
样例输出
1.633
来源
Noi 99

3.思路:

确定公式的常量

深搜+剪枝

4.代码:

 #include <iostream>
#include <cstdio>
#include <cmath> #define NUM 8 using namespace std; double res_sigma; int n;
int arr[NUM][NUM]; double all_avg; double sigma; void dfs(int x1,int y1,int x2,int y2,int sum,int cut)
{
int k,i,j;
int temp_sum,temp_avg;
double temp; if(cut == )
{
temp = (sum - all_avg) * (sum - all_avg);
if(sigma + temp < res_sigma) {res_sigma = sigma + temp;}
return;
} temp_sum = ;
for(k = y1; k < y2; ++k)
{
for(j = x1; j <= x2; ++j) temp_sum += arr[k][j]; temp_avg = temp_sum;
temp = (all_avg - temp_avg) * (all_avg - temp_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(x1,k + ,x2,y2,sum - temp_sum,cut - );
sigma -= temp;
} temp_avg = sum - temp_sum;
temp = (all_avg - temp_avg) * (all_avg - temp_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(x1,y1,x2,k,temp_sum,cut - );
sigma -= temp;
} } temp_sum = ;
for(k = x1; k < x2; ++k)
{
for(i = y1; i <= y2; ++i) temp_sum += arr[i][k]; temp_avg = temp_sum;
temp = (all_avg - temp_avg) * (all_avg - temp_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(k + ,y1,x2,y2,sum - temp_sum,cut - );
sigma -= temp;
} temp_avg = sum - temp_sum;
temp = (temp_avg - all_avg) * (temp_avg - all_avg);
if(sigma + temp < res_sigma)
{
sigma += temp;
dfs(x1,y1,k,y2,temp_sum,cut - );
sigma -= temp;
} }
} int main()
{
//freopen("C://input.txt","r",stdin); cin >> n; int i,j; int sum = ;
for(i = ; i < NUM; ++i)
{
for(j = ; j < NUM; ++j)
{
cin >> arr[i][j];
sum += arr[i][j];
}
}
all_avg = sum * 1.0 / n; res_sigma = sum * sum * n; dfs(,,NUM - ,NUM - ,sum,n - ); cout.setf(ios::fixed);
cout.precision();
cout << sqrt(res_sigma / n) << endl; return ;
}

OpenJudge/Poj 1191 棋盘分割的更多相关文章

  1. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  2. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  3. poj 1191 棋盘分割 动态规划

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11457   Accepted: 4032 Description ...

  4. POJ 1191 棋盘分割

    棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...

  5. POJ 1191棋盘分割问题

    棋盘分割问题 题目大意,将一个棋盘分割成k-1个矩形,每个矩形都对应一个权值,让所有的权值最小求分法 很像区间DP,但是也不能说就是 我们只要想好了一个怎么变成两个,剩下的就好了,但是怎么变,就是变化 ...

  6. (中等) POJ 1191 棋盘分割,DP。

    Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  7. POJ - 1191 棋盘分割 记忆递归 搜索dp+数学

    http://poj.org/problem?id=1191 题意:中文题. 题解: 1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的 ...

  8. poj 1191 棋盘分割(dp + 记忆化搜索)

    题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...

  9. POJ 1191 棋盘分割(DP)

    题目链接 题意 : 中文题不详述. 思路 : 黑书上116页讲的很详细.不过你需要在之前预处理一下面积,那样的话之后列式子比较方便一些. 先把均方差那个公式变形, 另X表示x的平均值,两边平方得 平均 ...

随机推荐

  1. cocos2d-x 屏幕坐标系和OPenGL坐标系转换

    转自:http://home.cnblogs.com/group/topic/57609.html cocos2d坐标系(OPenGL坐标系):以左下角为原点,x向右,y向上 屏幕坐标系(androi ...

  2. Java连接MYSQL【转载】

    这篇文章主要以MySQL为例讲下Java如何连接到数据库的. 当然,首先要安装有JDK(一般是JDK1.5.X).然后安装MySQL,这些都比较简单,具体过程就不说了.配置好这两个环境后,下载JDBC ...

  3. android129 zhihuibeijing 聊天机器人

    上屏幕界面activity_main.xml: 语音识别界面 <LinearLayout xmlns:android="http://schemas.android.com/apk/r ...

  4. Java自学成长路线(转载)

    JAVA自学之路 一:学会选择  决心做软件的,大多数人选的是java,或是.net,也有一些选择了手机.嵌入式.游戏.3G.测试等.  JAVA是一种平台,也是一种程序设计语言,如何学好程序设计不仅 ...

  5. Dubbo架构设计详解--转载

    原文地址:http://shiyanjun.cn/archives/325.html Dubbo是Alibaba开源的分布式服务框架,它最大的特点是按照分层的方式来架构,使用这种方式可以使各个层之间解 ...

  6. 网页js生成当前年月日 星期

    只需将下面代码插入需要显示日期的地方即可 <div style="color: brown; font-size: 10px;">今天是: <script lan ...

  7. 新闻头条应用源码ios版

    <ignore_js_op>      源码下载:http://code.662p.com/view/13343.html     作者ymcao,源码TopNewsIOS,新闻头条IOS ...

  8. Android_ViewPager

    view1源代码及xml资源文件: <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...

  9. mfc模态对话框

    Mfc模态对话框: 创建模态对话框: [模态对话框:具有独占行为,必须由用户完成对当前对话框的响应,才能对本对话框所属的进程进行其他操作] 例如: 我们创建一个加法计算器.点击计算之后,弹出一个对话框 ...

  10. centos中安装jdk方法

    RPM安装方法一: 1.检验系统原版本[root@zck ~]# java -versionjava version "1.6.0_24"OpenJDK Runtime Envir ...