题目:

Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,3], a solution is:

[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]

链接: http://leetcode.com/problems/subsets/

题解:

求数组子数组。先把数组排序,之后就可以使用DFS,维护一个递增的position,递归后要backtracking。

Time Complexity - O(n * 2n), Space Complexity - O(n)

public class Solution {
public ArrayList<ArrayList<Integer>> subsets(int[] S) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
if(S == null || S.length == 0)
return result;
ArrayList<Integer> list = new ArrayList<Integer>();
Arrays.sort(S);
helper(result, list, S, 0);
return result;
} private void helper(ArrayList<ArrayList<Integer>> result, ArrayList<Integer> list, int[] S, int pos){
result.add(new ArrayList<Integer>(list)); for(int i = pos; i < S.length; i ++){
list.add(S[i]);
helper(result, list, S, ++pos);
list.remove(list.size() - 1);
}
}
}

Updates:

public class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if(nums == null || nums.length == 0)
return res;
Arrays.sort(nums);
ArrayList<Integer> list = new ArrayList<>();
dfs(res, list, nums, 0);
return res;
} private void dfs(List<List<Integer>> res, ArrayList<Integer> list, int[] nums, int pos) {
res.add(new ArrayList<Integer>(list)); for(int i = pos; i < nums.length; i++) {
list.add(nums[i]);
dfs(res, list, nums, ++pos);
list.remove(list.size() - 1);
}
}
}

Update:

为什么以前总写成++pos? i + 1就可以了

public class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if(nums == null || nums.length == 0)
return res;
Arrays.sort(nums);
ArrayList<Integer> list = new ArrayList<>();
dfs(res, list, nums, 0);
return res;
} private void dfs(List<List<Integer>> res, ArrayList<Integer> list, int[] nums, int pos) {
res.add(new ArrayList<Integer>(list)); for(int i = pos; i < nums.length; i++) {
list.add(nums[i]);
dfs(res, list, nums, i + 1);
list.remove(list.size() - 1);
}
}
}

二刷:

发现自己以前不懂装懂糊弄过去了好多题...我勒个去。

这道题目我们也是使用跟上一题combination类似的方法。

  1. 这里我们根据题意首先要对数组排个序
  2. 构造一个辅助函数getSubsets来进行DFS和backtracking, 同时这个辅助函数还要有一个pos来控制遍历的位置,我们先pass 0 进去。
  3. 每次进入getSubsets我们都直接往结果集中加入一个当前List的新副本
  4. 接下来从pos开始遍历整个数组,每次进入新一层dfs的时候pass 新的pos =  i + 1,这样就能保证结果中的顺序是从小到大

Java:

Time Complexity - O(n!), Space Complexity (n2)

public class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums == null || nums.length == 0) {
return res;
}
Arrays.sort(nums);
List<Integer> list = new ArrayList<>();
getSubsets(res, list, nums, 0);
return res;
} private void getSubsets(List<List<Integer>> res, List<Integer> list, int[] nums, int pos) {
res.add(new ArrayList<Integer>(list));
for (int i = pos; i < nums.length; i++) {
list.add(nums[i]);
getSubsets(res, list, nums, i + 1);
list.remove(list.size() - 1);
}
}
}

三刷:

下次还需要研究Bit Manipulation 以及 iterative的写法。

Java:

Time Complexity - O(n * 2n), Space Complexity (2n)

class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums == null || nums.length == 0) return res;
subsets(res, nums, new ArrayList<Integer>(), 0);
return res;
} private void subsets(List<List<Integer>> res, int[] nums, List<Integer> list, int idx) {
res.add(new ArrayList<>(list)); for (int i = idx; i < nums.length; i++) {
list.add(nums[i]);
subsets(res, nums, list, i + 1);
list.remove(list.size() - 1);
}
}
}

  

测试:

Reference:

https://leetcode.com/discuss/72498/simple-iteration-no-recursion-no-twiddling-explanation

https://leetcode.com/discuss/25696/simple-java-solution-with-for-each-loops

https://leetcode.com/discuss/29631/java-subsets-solution

https://leetcode.com/discuss/46668/recursive-iterative-manipulation-solutions-explanations

https://leetcode.com/discuss/9213/my-solution-using-bit-manipulation

http://www.cnblogs.com/springfor/p/3879830.html

http://www.cnblogs.com/zhuli19901106/p/3492515.html

http://www.1point3acres.com/bbs/thread-117602-1-1.html

78. Subsets的更多相关文章

  1. 78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning

    78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: The solution ...

  2. leetcode 78. Subsets 、90. Subsets II

    第一题是输入数组的数值不相同,第二题是输入数组的数值有相同的值,第二题在第一题的基础上需要过滤掉那些相同的数值. level代表的是需要进行选择的数值的位置. 78. Subsets 错误解法: cl ...

  3. 刷题78. Subsets

    一.题目说明 题目78. Subsets,给一列整数,求所有可能的子集.题目难度是Medium! 二.我的解答 这个题目,前面做过一个类似的,相当于求闭包: 刷题22. Generate Parent ...

  4. [LeetCode] 78. Subsets 子集合

    Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...

  5. Leetcode#78 Subsets

    原题地址 有两种方法: 1. 对于序列S,其子集可以对应为一个二进制数,每一位对应集合中的某个数字,0代表不选,1代表选,比如S={1,2,3},则子集合就是3bit的所有二进制数. 所以,照着二进制 ...

  6. 78 Subsets(求子集Medium)

    题目意思:求解一个数组的所有子集,子集内的元素增序排列eg:[1,3,2] result:[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]思路:这是一个递推的过程 [] ...

  7. LeetCode OJ 78. Subsets

    Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a subset must ...

  8. LeetCode 78. Subsets(子集合)

    Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not ...

  9. 78. Subsets(中等,集合的子集,经典问题 DFS)

    Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not ...

随机推荐

  1. 为什么24位位图(真彩色)的biSizeImage不等于(biWidth*biBitCount+31)/32*4*biHeight?

    规定的,规定BMP文件的像素数据是按行存储的,而且每行的字节数必须为4的倍数,如果实际的像素数据不是4的倍数咋办?这就需要字节对齐,对齐是在一行的末尾添0以补足一行的字节数为4的倍数, ( biWid ...

  2. c#中的类型转换

    Parse类型转换 Parse()函数 int.double都能调用Parse()函数,Parse(string str);如果转换成功就成功,失败就会抛出一个异常; TryParse()函数 相应地 ...

  3. 简单的Datatable转List,Json

    这里用到了Newtonsoft.Json,下载地址:http://json.codeplex.com/ 1.根据不同的Model转为对应的List public static List<Mode ...

  4. 《.NET简单企业应用》技术路线

    前言 工作三年了,一直从事基于.NET体系的企业应用开发,心得和经验也攒了点:担心时间长了给忘了,所以得给写下来,以便以后回味回味:更重要的是能让知识系统化和体系化. 本系列以一个简单的企业应用系统为 ...

  5. Linux磁盘与文件系统管理

    df df(disk free) 功能说明:显示磁盘的相关信息.语 法:df [-ahHiklmPT][--block-size=<区块大小>][-t <文件系统类型>][-x ...

  6. 活动 Activity 四种加载模式

    singleTop要求如果创建intent的时候栈顶已经有要创建的Activity的实例,则将intent发送给该实例,而不发送给新的实例.(注意是栈顶,不在栈顶照样创建新实例!) singleTas ...

  7. 发现一个很好的android开发笔记库

    http://linux.linuxidc.com/ 密码和用户名都是www.linuxidc.com android基础教程到高手进阶,游戏开发,数据存储,android架构等.谢谢网站主分享!

  8. Unity物理优化的一个小问题

    为了性能优化,Unity会计算场景中所有的体积,包括静态的碰撞器并把 这些信息存在“Cash”中,对于静止物体而言,有了这些信息,就不需要 再每帧重新进行计算了.若移动,拉伸后或旋转了静态物体时,就是 ...

  9. 【BZOJ】【2154】Crash的数字表格

    莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...

  10. uuid-不好之处

    数据库中直接存储UUID的坏处: 完全‘随机’的字符串,例如由MD5().SHA1().UUID()产生的.它们产生的每一个新值都会被任意地保存在很大的空间范围内, 这会减慢INSERT及一些SELE ...