[2-sat]HDOJ3062 Party
中文题 题意略
学2-sat啦啦啦
2-sat就是 矛盾的 ($x、x’$不能同时取) m对人 相互也有限制条件 取出其中n个人
也有可能是把一件东西分成 取/不取 相矛盾的两种情况 (那就要拆点啦~) 取其中n件
做法是 暴力 和 强连通 两种
重点在于建图:
对于x,记 取 为 $x$, 不取 为$x’$
对于y,记 取 为 $y$, 不取 为$y’$
对于 一对矛盾u($u、u'$) 和 一对矛盾v($v、v'$) 建立$u\Rightarrow v$的含义是 取$u$ 则 必须取$v$
那么对于事件“x、y不能同时选” 需要建立两条边: $x\Rightarrow y'$(取$x$ 则必定 取$y’$,也就是不取$y$) 、 $y\Rightarrow x'$(取$y$ 则必定 取$x’$,也就是不取$x$)
“x、y不能同时不选” $x'\Rightarrow y$(取$x’$,也就是不取$x$ 则必须取$y$) 、 $y’\Rightarrow x$(取$y’$,也就是不取$y$ 则必须取$x$)
“x、y要同时选” $x\Rightarrow y$(取$x$ 则 必须取$y$)
“x、y要同时不选” $x’\Rightarrow y’$(取$x’$ 则 必须取$y’$)
还有个比较特殊的: “x必须选”
这个建边的方法(类似于反证法)是 建立不能取x'的边
$x'\Rightarrow x$
结合边的含义来看:上述边的意义是:取x’(不取x) 则必须取x
显然这是矛盾的, 那么对于取x’ 这个方案是不行的,也就是必须取x
呃(-。-;)这个有点绕。。。 就是 不取x是不行的 那就是取x咯
在算法运行的过程中 一旦出现矛盾 比如上述的取x'(不取x) 又要取x的情况 那么就可以开始回溯了 这个方案是行不通的
噢 回到这道题
这道题 丈夫和妻子不能同时出席 就是x和x’ 了
比如案例0号丈夫和1号丈夫不能同时选
那就建 0丈夫$\Rightarrow$ 1妻子 、 1丈夫$\Rightarrow$ 0妻子 的两条边即可
然后套个九爷的模板啦啦啦就好啦
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> PI;
#define INF 0x3f3f3f3f const int N=*;
const int M=N*N;
//注意n是拆点后的大小 即 n <<= 1 N为点数(注意要翻倍) M为边数 i&1=0为i真 i&1=1为i假
struct Edge
{
int to, nex;
}edge[M];
//注意 N M 要修改
int head[N], edgenum;
void addedge(int u, int v)
{
Edge E={v, head[u]};
edge[edgenum]=E;
head[u]=edgenum++;
} bool mark[N];
int Stack[N], top;
void init()
{
memset(head, -, sizeof(head));
edgenum=;
memset(mark, , sizeof(mark));
} bool dfs(int x)
{
if(mark[x^])
return false;//一定是拆点的点先判断
if(mark[x])
return true;
mark[x]=true;
Stack[top++]=x;
for(int i=head[x];i!=-;i=edge[i].nex)
if(!dfs(edge[i].to))
return false; return true;
} bool solve(int n)
{
for(int i=;i<n;i+=)
if(!mark[i] && !mark[i^])
{
top=;
if(!dfs(i))
{
while(top)
mark[Stack[--top]]=false;
if(!dfs(i^))
return false;
}
}
return true;
} int main()
{
int n;
while(~scanf("%d", &n))
{
int m;
scanf("%d", &m);
init();
while(m--)
{
int a1, a2, c1, c2;
scanf("%d%d%d%d", &a1, &a2, &c1, &c2);
addedge(*a1+c1, *a2-c2+);
addedge(*a2+c2, *a1-c1+);
}
solve(n)? puts("YES"): puts("NO");
}
return ;
}
HDOJ 3062
[2-sat]HDOJ3062 Party的更多相关文章
- 多边形碰撞 -- SAT方法
检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- 学习笔记(two sat)
关于two sat算法 两篇很好的论文由对称性解2-SAT问题(伍昱), 赵爽 2-sat解法浅析(pdf). 一些题目的题解 poj 3207 poj 3678 poj 3683 poj 3648 ...
- LA 3211 飞机调度(2—SAT)
https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...
- HIT 1917 2—SAT
题目大意:一国有n个党派,每个党派在议会中都有2个代表, 现要组建和平委员会,要从每个党派在议会的代表中选出1人,一共n人组成和平委员会. 已知有一些代表之间存在仇恨,也就是说他们不能同时被选为和平委 ...
- 2 - sat 模板(自用)
2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一 POJ 3207 Ikki's Story IV ...
- SAT考试里最难的数学题? · 三只猫的温暖
问题 今天无意中在Quora上看到有人贴出来一道号称是SAT里最难的一道数学题,一下子勾起了我的兴趣.于是拿起笔来写写画画,花了差不多十五分钟搞定.觉得有点意思,决定把解题过程记下来.原帖的图太小,我 ...
- 世界碰撞算法原理和总结(sat gjk)
序言 此文出于作者的想法,从各处文章和论文中,总结和设计项目中碰撞结构处理方法.如有其它见解,可以跟作者商讨.(杨子剑,zijian_yang@yeah.net). 在一个世界中,有多个物体,物体可以 ...
随机推荐
- ubuntu OPENCV移植
Installing OpenCV 2.4.1 in Ubuntu 12.04 LTS 这是转载国外一篇文章 移植PC上的OPENCV http://www.samontab.com/web/20 ...
- Winform合并多个Excel文件到一个文件中(源文件.xls,实际是.xml)
1.下面两个文件.xls是给的文件,实际上是.xml文件 2.具体的代码 private void btOK_Click(object sender, EventArgs e) { //0.获取路径文 ...
- 用泛型的IEqualityComparer<T>接口去重复项
提供者:porschev 题目:下列数据放在一个List中,当ID和Name都相同时,去掉重复数据 ID Name 1 张三 1 李三 1 小伟 1 李三 2 李四 2 李武 ----- ...
- JS 获取select(多选下拉)中所选值的示例代码
通过js获取select(多选下拉)中所选值,具体实现如下,有需要的朋友可以参考下,希望对大家有所帮助 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML ...
- PHP获取Cookie模拟登录CURL
要提取google搜索的部分数据,发现google对于软件抓取它的数据屏蔽的厉害,以前伪造下 USER-AGENT 就可以抓数据,但是现在却不行了.利用抓包数据发现,Google 判断了 cookie ...
- openerp经典收藏 OpenERP库存管理的若干概念讲解(新增库存价值)(转载)
OpenERP库存管理的若干概念讲解(新增库存价值) 原文:http://shine-it.net/index.php/topic,2425.0/topicseen.html 一.复式库存(Doubl ...
- 将Vim改造为强大的IDE
1.安装Vim和Vim基本插件 首先安装好Vim和Vim的基本插件.这些使用apt-get安装即可: lingd@ubuntu:~/arm$sudo apt-get install vim vim-s ...
- self,parent,this区别
我容易混淆public,private,protected,还容易混淆this,self这些东西.前面已经写了一篇关于public,private,protected博文了,下面来说一下this,se ...
- Spiral Matrix
Spiral Matrix Given a matrix of m x n elements (m rows, n columns), return all elements of the matri ...
- sqlserver insert into select
Insert into [fenxi].[dbo].[analysisresult]( [dayofweek] ,[quarter] ,[reporttime] ,[type] ,[value]) s ...