题意:

平面上有n个点,现在要把它们全部连通起来。现在有q个套餐,如果购买了第i个套餐,则这个套餐中的点全部连通起来。也可以自己单独地建一条边,费用为两点欧几里得距离的平方。求使所有点连通的最小费用。

分析:

很明显,如果没有这些套餐的话,就是一个裸的MST。

可以枚举套餐的组合情况,然后把套餐中的边的权值置为0,再求MST。

在求MST的过程中,并不需要把所有的边都加进来。只要把原图的MST的那些边和套餐中的边加进来即可。

因为,对于不在原图的MST的边,购买套餐以后,按照权值排序,排在它之前的边不会减少,反而会因为购买套餐而在前面多出来一些权值为0的边。所以原图中被“淘汰”的边,在购买套餐后也一定会被“淘汰”。

 #include <cstdio>
#include <vector>
#include <algorithm>
using namespace std; const int maxn = + ;
const int maxq = ;
int n;
int x[maxn], y[maxn], cost[maxq];
vector<int> subn[maxq]; int pa[maxn];
int findset(int x) { return x == pa[x] ? x : pa[x] = findset(pa[x]); } struct Edge
{
int u, v, d;
Edge(int u, int v, int d):u(u), v(v), d(d) {}
bool operator < (const Edge& rhs) const { return d < rhs.d; }
}; int MST(int cnt, vector<Edge>& e, vector<Edge>& used)
{
if(cnt == ) return ;
int m = e.size();
int ans = ;
used.clear();
for(int i = ; i < m; ++i)
{
int u = findset(e[i].u), v = findset(e[i].v);
if(u != v)
{
pa[u] = v;
ans += e[i].d;
used.push_back(e[i]);
if(--cnt == ) break;
}
}
return ans;
} int main()
{
//freopen("in.txt", "r", stdin);
int T;
scanf("%d", &T);
while(T--)
{
int q;
scanf("%d%d", &n, &q);
for(int i = ; i < q; ++i)
{
int cnt;
scanf("%d%d", &cnt, &cost[i]);
subn[i].clear();
while(cnt--)
{
int u;
scanf("%d", &u);
subn[i].push_back(u-); //代码中节点的编号是从0开始的
}
}
for(int i = ; i < n; ++i) scanf("%d%d", &x[i], &y[i]); vector<Edge> e, need;
for(int i = ; i < n; ++i)
for(int j = ; j < i; ++j)
{
int c = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
e.push_back(Edge(i, j, c));
} for(int i = ; i < n; ++i) pa[i] = i;
sort(e.begin(), e.end()); int ans = MST(n, e, need);
for(int S = ; S < (<<q); ++S)
{//枚举所有套餐的组合情况
for(int i = ; i < n; ++i) pa[i] = i;
int cnt = n, c = ;
for(int i = ; i < q; ++i) if(S & (<<i))
{
c += cost[i];
for(int j = ; j < subn[i].size(); ++j)
{
int u = findset(subn[i][j]), v = findset(subn[i][]);
if(u != v) { --cnt; pa[u] = v; }
}
}
vector<Edge> hehe; //这里只是为了调用函数,所以弄了一个无关紧要的参数
ans = min(ans, c + MST(cnt, need, hehe));
} printf("%d\n", ans);
if(T) printf("\n");
} return ;
}

代码君

UVa 1151 (枚举 + MST) Buy or Build的更多相关文章

  1. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  2. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  3. POJ(2784)Buy or Build

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1369   Accepted: 542 Descr ...

  4. Buy or Build (poj 2784 最小生成树)

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1348   Accepted: 533 Descr ...

  5. 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)

    题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...

  6. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  7. Buy or Build UVA - 1151 Kruskal+枚举

    题意: 大概意思是有 n 个点,现在有 q 个方案 ,第 i 个方案耗费为 ci ,使 Ni 个点联通 ,当然也可以直接使两点联通 ,现求最小生成树的代价. 两点直接联通的代价是欧几里得距离的平方: ...

  8. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  9. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

随机推荐

  1. Demo学习: ClientInfo

    ClientInfo 获取客户端环境参数,从0.9版本开始新增了TUniClientInfoRec对象,可以得到客户端的一些信息,之前为了获取浏览器版本号需要自己写函数,现在可以直接使用TUniCli ...

  2. 用python实现了一下:甲乙两人互猜数字(数理逻辑)

    今天在园子里看到博客:超难面试题:甲乙两人互猜数字(数理逻辑).然后琢磨了半天,写了个Python程序实现算法,我得出来的结果是1,6或1,8或35,42的组合, 不知道是否正确,请高人指点? 下面列 ...

  3. s3c-u-boot-1.1.6源码分析

    源码 源码结构 移植准备

  4. table如何在过宽的时候添加滚动条

    在页面中,往往由于一个table的列过于多,导致页面放不下,然后内容各种挤变形. 这里说一个解决方法,.先用一个DIV把TABLE包围起来.然后给这个DIV设置宽度,并且设置overflow:auto ...

  5. PL/SQL中如何执行DDL、SCL?

    PL/SQL程序中不能直接执行DDL语句.为什么? 假设我们在pl/sql程序中有这样的一条DDL语句—— drop table emp:在第一次解析pl/sql中的“drop table emp;” ...

  6. 【go】脑补框架 Express beego tornado Flux reFlux React jsx jpg-ios出品

    http://goexpresstravel.com/ 今天 Express 的作者 TJ Holowaychuk 发了一篇文章,正式宣告和 Node.js 拜拜了,转向 Go 语言. Go vers ...

  7. 操作数据(insert、update、delete)

    插入数据 使用Insert Into 插入 if(exists(select * from sys.databases where name = 'webDB')) drop database web ...

  8. EXTJS 4.2 资料 控件之radiogroup 的用法

    最近在EXTJS4.2开发项目,radiogroup的用法,主要是和grid之间的编辑功能:看了好多资料都不对,特此在这里备注记录 代码如下, 1.这是一段Win窗体上的两个单选按钮,设置单选按钮都是 ...

  9. Xcode和github入门详细教程

    Xcode和github详细教程! 主要是参考了现在网上的一些资料给没整过的人一个详细的指南. (1)先在github上注册账号,自行解决! (2)在导航栏右上角new一个repository(仓库) ...

  10. js和HTML结合(补充知识:如何防止文件缓存的js代码)

    来自<javascript高级程序设计 第三版:作者Nicholas C. Zakas>的学习笔记(二) 使用html标签<script>可以把js嵌入到html页面中,让脚本 ...