[POJ 1365] Prime Land
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 3211 | Accepted: 1473 |
Description
(ekx, ekx-1, ... ,e1, e0)
is considered to be the representation of x in prime base number system.
It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple.
Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''.
Help people in the Prime Land and write a corresponding program.
For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi.
Input
Output
Sample Input
17 1
5 1 2 1
509 1 59 1
0
Sample Output
2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1
Source
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
#define N 100000 ll tot;
bool isprime[N+];
ll prime[N+]; //1~tot-1
void getprime() //复杂度:O(n)
{
tot=;
memset(isprime,true,sizeof(isprime));
isprime[]=isprime[]=false;
for(ll i=;i<=N;i++)
{
if(isprime[i]) prime[tot++]=i;
for(ll j=;j<tot;j++)
{
if(i*prime[j]>N) break;
isprime[i*prime[j]]=false;
if(i%prime[j]==)
{
break;
}
}
}
}
ll fatcnt;
ll factor[N][]; //0~fatcnt-1
ll getfactors(ll x) //x>1
{
fatcnt=;
ll tmp=x;
for(ll i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatcnt][]=;
if(tmp%prime[i]==)
{
factor[fatcnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatcnt][]++;
tmp/=prime[i];
}
fatcnt++;
}
}
if(tmp!=)
{
factor[fatcnt][]=tmp;
factor[fatcnt++][]=;
}
return fatcnt;
}
ll pow(ll a,ll b)
{
ll ret=;
while(b)
{
if(b&) ret*=a;
a=a*a;
b>>=;
}
return ret;
}
int main()
{
getprime();
ll num,a,b,i;
char op;
while(scanf("%lld",&a),a)
{
scanf("%lld%c",&b,&op);
num=pow(a,b);
if(op!='\n')
{
while(scanf("%lld%lld%c",&a,&b,&op))
{
num*=pow(a,b);
if(op=='\n') break;
}
}
getfactors(num-);
for(i=fatcnt-;i>;i--) printf("%lld %lld ",factor[i][],factor[i][]);
printf("%lld %lld\n",factor[i][],factor[i][]);
}
return ;
}
[POJ 1365] Prime Land的更多相关文章
- POJ 1365 Prime Land(数论)
题目链接: 传送门 Prime Land Time Limit: 1000MS Memory Limit: 10000K Description Everybody in the Prime ...
- POJ 1365 Prime Land(整数拆分)
题意:感觉题意不太好懂,题目并不难,就是给一些p和e,p是素数,e是指数,然后把这个数求出来,设为x,然后让我们逆过程输出x-1的素数拆分形式,形式与输入保持一致. 思路:素数打表以后正常拆分即可. ...
- 筛选法 || POJ 1356 Prime Land
英文题读不懂题==质数幂的形式给你一个数 把它减一再用质数幂的形式表示出来 *解法:质数从小到大模拟除一遍,输入有点别扭 #include <iostream> #include < ...
- [暑假集训--数论]poj1365 Prime Land
Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...
- 双向广搜 POJ 3126 Prime Path
POJ 3126 Prime Path Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16204 Accepted ...
- poj 2689 Prime Distance(大区间素数)
题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...
- POJ 3126 Prime Path(素数路径)
POJ 3126 Prime Path(素数路径) Time Limit: 1000MS Memory Limit: 65536K Description - 题目描述 The minister ...
- Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test
POJ 1811 Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 32534 Accepted: 8 ...
- POJ 3518 Prime Gap(素数)
POJ 3518 Prime Gap(素数) id=3518">http://poj.org/problem? id=3518 题意: 给你一个数.假设该数是素数就输出0. 否则输出比 ...
随机推荐
- Delphi Variant oleVariant
The OleVariant type exists on both the Windows and Linux platforms. The main difference between Vari ...
- .NET平台一些概念
1.什么是CLR CLR(Common Language Runtime)公共语言远行时,是一个可由多种编程语言使用的“远行时”.CLR的核心功能(比如内存管理.程序集加载.安全性.异常处理和线程同步 ...
- 2014年辛星完全解读Javascript第五节 break和continue与错误处理
先说一下break和continue的主要用法吧,break用于跳出循环,continue用于跳过该循环中的一个迭代.简单的说,就是break直接从该语句跳出,但是continue不会跳出该循环语句, ...
- Matlab生成动态链接库供C#调用
1.首先在Matlab中编写一个或几个.m文件 2.然后在命令空间中输入命令:deploytool 3.修改工程名称,修改需要生成文件后缀 4.添加类,添加文件,然后点击生成.
- MVC5 Bundles发布到IIS失效问题解决方案
MVC中Bundles可以提高代码的可重用性 我每个页面都需要用到这十几个JS+CSS 当我把MVC发布到服务器以后,Bundles中的JS和CSS会失效的时候 宝宝的心里是崩溃的.... 查了很多资 ...
- EasyUI + EF + MVC4 后台截图
到目前完成的页面截图,完成了增删改查几项功能的技术测试,在解决几个小问题,就重新设计结构开始一个完整的后台开发,坚持用博客和云笔记记录开发过程.
- linux安装软件命令
tar.bz2的解压: tar -jxvf FileName.tar.bz2 然后安装: cd FileName ./configure make make install rpm 包的安装: rpm ...
- UITextField监听文字输入事件
[textField addTarget:self action:@selector(textFieldDidChange:)forControlEvents:UIControlEventEditin ...
- php+mysql分页类的入门实例
php+mysql分页类的简单代码 时间:2016-02-25 06:16:26来源:网络 导读:php+mysql分页类的简单代码,二个php分页类代码,对商品进行分页展示,当前页面数,每个页面展示 ...
- 超简单的卸载ORACLE 11g
本机环境 win10 64位 找到安装目录下的 F:\app\Shuai\product\11.2.0\dbhome_1 按键盘d找到deinstall文件夹进入 管理员运行deinstall.bat ...