欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942

糖教题解处:http://blog.csdn.net/skywalkert/article/details/43955611

注:知道欧拉公式是远远不够的,还要知道欧拉降幂公式,因为当指数很大的时候需要用

然后欧拉降幂公式不要求A,C互质,但是B必须大于等于C的欧拉函数

吐槽:感觉记忆化搜索影响不大啊,当然肯定是因为太水了

这样复杂度是O(T*sqrt(p)*logp)

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <vector>
#include <math.h>
#include <stack>
#include <map>
using namespace std;
typedef long long LL;
const int N = ;
int qpow(int a,int b,int mod){
int ret=;
while(b){
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod;
b>>=;
}
return ret;
}
int eular(int x){
int ret=x;
for(int i=;i*i<=x;++i){
if(x%i)continue;
ret=ret/i*(i-);
while(x%i==)x/=i;
}
if(x>)ret=ret/x*(x-);
return ret;
}
int f(int x){
if(x==)return ;
int phi=eular(x);
return qpow(,f(phi)+phi,x);
}
int main(){
int T;
scanf("%d",&T);
while(T--){
int p;
scanf("%d",&p);
printf("%d\n",f(p));
}
return ;
}

bzoj3884: 上帝与集合的正确用法 欧拉降幂公式的更多相关文章

  1. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

  2. [bzoj3884]上帝与集合的正确用法——欧拉函数

    题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...

  3. [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)

    题目链接:  https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...

  4. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  5. bzoj千题计划264:bzoj3884: 上帝与集合的正确用法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...

  6. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. bzoj3884: 上帝与集合的正确用法(数论)

    感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...

  8. BZOJ3884 上帝与集合的正确用法(欧拉函数)

    设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...

  9. bzoj3884上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

随机推荐

  1. JavaSE GUI显示列表 JTable的刷新 重新加载新的数据

    JTable在显示所有数据之后,假如需要搜索某个名字,则会获取新的列表数据. 假设datas是JTable的数据,定义为: private Vector<Vector> datas = n ...

  2. QTP重要功能总结

    以下为QTP最应掌握的.最常用的功能(以下仅提供菜单入口,其他还有很多入口,但功能都是一样的) 1.QTP上方菜单栏->Tools->Object Spy(对象探测器)----多个入口 功 ...

  3. leetcode 5 :Longest Palindromic Substring 找出最长回文子串

    题目: Given a string S, find the longest palindromic substring in S. You may assume that the maximum l ...

  4. HTML5入门5---HTML5控件元素

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. Java学习笔记之:Java StringBuffer类

    一.引言 当对字符串进行修改的时候,需要使用StringBuffer类. 和String类不同的是,StringBuffer和StringBuilder类的对象能够被多次的修改,并且不产生新的未用对象 ...

  6. Windows下gcc以及Qt的DLL文件调用之总结(三种方法)

    DLL与LIB的区别 :1.DLL是一个完整程序,其已经经过链接,即不存在同名引用,且有导出表,与导入表lib是一个代码集(也叫函数集)他没有链接,所以lib有冗余,当两个lib相链接时地址会重新建立 ...

  7. swift:类型转换(is用作判断检测、as用作类型向下转换)

    类型转换是一种检查类实例的方式,并且哦或者也是让实例作为它的父类或者子类的一种方式.   类型转换在Swift中使用is 和 as操作符实现.这两个操作符提供了一种简单达意的方式去检查值的类型或者转换 ...

  8. Android LayoutInflater.from(context).inflate

    在应用中自定义一个view,需要获取这个view的布局,需要用到 (LinearLayout) LayoutInflater.from(context).inflate(R.layout.conten ...

  9. printf left justify

    http://www.lemoda.net/c/printf-left-justify/index.html This example program demonstrates how to left ...

  10. myeclipse快速开发配置

    1,打开MyEclipse 2013然后“window”→“Preferences” 2. 选择“java”,展开,“Editor”,选择“Content Assist”. 3. 选择“Content ...