题意:

给你一个数n每一步这个数可以变为他的因子,直到这个数变为1,求n变到1的期望步数。

分析:

dp[i],表示i变为1的期望步数,dp[1]=0,dp[n]是答案。

dp[i]=sum(dp[j])/tmp+1;(j是i的因子,tmp是i因子的个数

化简即可

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define N 100001
#define read freopen("in.txt", "r", stdin)
const ll INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod = ;
double dp[];
int n;
void solve(){
dp[]=0.0;
for(int i=;i<N;++i){
dp[i]=0.0;
int tmp=;
for(int j=;j*j<=i;++j){
if(i%j==){
tmp++;
dp[i]+=dp[j];
if(j!=(i/j)&&j!=){
tmp++;
dp[i]+=dp[i/j];
}
}
}
dp[i]+=tmp;
dp[i]/=(tmp-);
}
}
int main()
{
int t,cas=;
scanf("%d",&t);
solve();
while(t--){
scanf("%d",&n);
printf("Case %d: %lf\n",++cas,dp[n]);
}
return ;
}

LightOJ 1038-Race to 1 Again(概率dp)的更多相关文章

  1. Lightoj 1038 - Race to 1 Again (概率DP)

    题目链接: Lightoj  1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少 ...

  2. LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)

    题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...

  3. LightOJ - 1038 Race to 1 Again —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Foru ...

  4. LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)

    题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...

  5. LightOJ 1038 Race to 1 Again(概率dp+期望)

    https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的 ...

  6. LightOJ 1038 - Race to 1 Again(期望+DP)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让 ...

  7. Lightoj 1038 - Race to 1 Again【期望+dp】

    题目:戳这里 题意:一个数字n不断迭代地除以自身的因子得到1.求这个过程中操作除法次数的期望. 解题思路: 求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案.因为每个数都有个共同的最终状态1 ...

  8. LightOJ - 1038 Race to 1 Again 递推+期望

    题目大意:给出一个数,要求你按一定的规则将这个数变成1 规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子.用D除上这个因子,然后继续按该规则运算.直到该数变成1 问变成1的期望步数是多少 ...

  9. lightoj 1038 Race to 1 Again

    题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M ...

随机推荐

  1. Oracle的学习三:java连接Oracle、事务、内置函数、日期函数、转换函数、系统函数

    1.java程序操作Oracle java连接Oracle JDBC_ODBC桥连接 1.加载驱动: Class.forName("sun.jdbc.odbc.JdbcodbcDriver& ...

  2. js模块化开发

    主要有两个:一个是sea.js,另一个是require.js

  3. lintcode:搜索二维矩阵II

    题目 搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没 ...

  4. [hackerrank]Manasa and Stones

    https://www.hackerrank.com/contests/w2/challenges/manasa-and-stones 简单题. #include<iostream> us ...

  5. 【Linux高频命令专题(3)】uniq

    简述 用途 报告或删除文件中重复的行. 语法 uniq [ -c | -d | -u ] [ -f Fields ] [ -s Characters ] [ -Fields ] [ +Characte ...

  6. java retention注解

    Retention注解 Retention(保留)注解说明,这种类型的注解会被保留到那个阶段. 有三个值:1.RetentionPolicy.SOURCE —— 这种类型的Annotations只在源 ...

  7. 转载CSDN (MVC WebAPI 三层分布式框架开发)

    前言:SOA(面向服务的架构)是目前企业应用开发过程中普遍采用的技术,基于MVC WebAPI三层分布式框架开发,以此适用于企业信息系统的业务处理,是本文论述的重点.此外,插件技术的应用,富客户端JQ ...

  8. Java类的加载、链接和初始化

    一.Java的类加载机制回顾与总结: 我们知道一个Java类要想运行,必须由jvm将其装载到内存中才能运行,装载的目的就是把Java字节代码转换成JVM中的java.lang.Class类的对象.这样 ...

  9. 8、双向一对多的关联关系(等同于双向多对一。1的一方有对n的一方的集合的引用,同时n的一方有对1的一方的引用)

    双向一对多关联关系 “双向一对多关联关系”等同于“双向多对一关联关系”:1的一方有对n的一方的集合的引用,同时n的一方有对1的一方的引用. 还是用客户Customer和订单Order来解释: “一对多 ...

  10. 用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

    This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima ...