CodeForces 689E Mike and Geometry Problem (离散化+组合数)
Mike and Geometry Problem
题目链接:
http://acm.hust.edu.cn/vjudge/contest/121333#problem/I
Description
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Output
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
Sample Input
Input
3 2
1 2
1 3
2 3
Output
5
Input
3 3
1 3
1 3
1 3
Output
3
Input
3 1
1 2
2 3
3 4
Output
6
Hint
题意:
横轴上有n个区间,每次取其中的k个区间,记录区间交集所覆盖的整点;
问对于所有的区间取法,一共覆盖了多少次整点;
题解:
实际上先求出每个整点被多少个区间所覆盖;
假设某点被m条边覆盖,则C(m, k)即为该点一共被覆盖的次数;
(若 m < k 则说明不可能处于k个区间的交集区);
前提:离散化各点! Map[l]++; Map[r+1]--;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
LL k;
map<int,int> mp;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
LL f1[maxn],f2[maxn];
/*分子n!,f[i]为(i!)%mod的值*/
void F1()
{
f1[0]=1;
for(int i=1;i<maxn;i++)
f1[i]=(f1[i-1]*i)%mod;
}
/*分母m!,f[i]为(1/i!)%mod的值--逆元*/
void F2()
{
f2[0]=1;
for(int i=1;i<maxn;i++)
{
ex_gcd(i,mod);while(x<0) {x+=mod;y-=i;}
f2[i]=(f2[i-1]*(x%mod))%mod;
}
}
LL C_m_n(LL m,LL n)
{
/*ans=m!/(m-n)!n!*/
LL ans=(((f1[m]*f2[m-n])%mod)*f2[n])%mod;
return ans;
}
int main(int argc, char const *argv[])
{
//IN;
F1(); F2();
while(scanf("%d %I64d",&n,&k) != EOF)
{
mp.clear();
for(int i=1; i<=n; i++) {
LL x,y; scanf("%I64d %I64d", &x,&y);
mp[x]++;
mp[y+1]--;
}
LL last = 0;
LL ans = 0, cur = 0;
map<int,int>::iterator it;
for(it=mp.begin(); it!=mp.end(); it++) {
LL x = it->first, y = it->second;
if(cur >= k)
ans = (ans + C_m_n(cur, k)*(x-last)) % mod;
last = x;
cur += y;
}
printf("%I64d\n", ans);
}
return 0;
}
CodeForces 689E Mike and Geometry Problem (离散化+组合数)的更多相关文章
- CodeForces 689E Mike and Geometry Problem
离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- codeforces 689E E. Mike and Geometry Problem(组合数学)
题目链接: E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes ...
- codeforces 361 E - Mike and Geometry Problem
原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...
- Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1
C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...
- 【算法系列学习】codeforces C. Mike and gcd problem
C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...
- codeforces#410C Mike and gcd problem
题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...
随机推荐
- SQL延时操作
--使用waitfor语句延迟或暂停程序的执行 --waitfor{delay'time'|time 'time'} delay是指间隔时间 最长到24小时 time是指定时间执行 waitfor d ...
- Android开发之源码:多次点击事件的原理和实现
多次点击事件 多次点击事件原理:最后一次点击事件与第一次点击事件的时间间隔是否小于某个时间,当小于的时候,就认为这是一个多次点击事件. Android源码实现效果: import android.ap ...
- [HDOJ4027]Can you answer these queries?(线段树,特殊成段更新,成段查询)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4027 RT,该题要求每次更新是更新所有节点,分别求平方根,查询是求和.昨晚思前想后找有没有一个数学上的 ...
- jenkins mac slave 设置
1.在jenkins上增加节点, 2,在mac系统中将ssh的服务打开在偏好设置- 互联网与无线 - 共享中 3,使用mac root用户修改sshd-config的鉴权方式 首先获取到root用户登 ...
- km算法的个人理解
首先相对于上个blog讲的匈牙利算法用于解决无权二分图的最佳匹配,km算法则是在匈牙利算法基础上更进一层的,每条边增加了权值后,真的开始看时有些无厘头,觉得没有什么好方法,但两位牛人Kuhn-Munk ...
- UVa 10305 (拓扑排序) Ordering Tasks
题意: 经典的拓扑排序.有n个任务,然后某些任务必须安排在某些任务前面完成,输出一种满足要求的序列. 分析: 拓扑排序用离散里面的话来说就是将偏序关系拓展为全序关系.我们将“小于”这种关系看做一条有向 ...
- HTML空格符号   / &ensp / &emsp
半角的不断行的空白格(推荐使用) 半角的空格 全角的空格
- 获取资源ID
比如,设置一张gif图片的宽高 gif.setShowDimension((int) CommonUtil.getDimen(R.dimen.gif), (int) CommonUtil.getDim ...
- phonegap archive 报错 Cordova/CDVViewController.h' file not found
在BuildSettings->Header Search Paths 增加如下路径,问题解决 $(OBJROOT)/UninstalledProducts/include "$(O ...
- tomcat 调优
1 总是遇到read time out ,socket什么的 <Executor name="tomcatThreadPool" namePrefix=& ...