Mike and Geometry Problem

题目链接:

http://acm.hust.edu.cn/vjudge/contest/121333#problem/I

Description

Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

As the answer may be very large, output it modulo 1000000007 (109 + 7).

Mike can't solve this problem so he needs your help. You will help him, won't you?

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

Then n lines follow, the i-th line contains two integers li, ri( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

Output

Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

Sample Input

Input

3 2

1 2

1 3

2 3

Output

5

Input

3 3

1 3

1 3

1 3

Output

3

Input

3 1

1 2

2 3

3 4

Output

6

Hint

题意:

横轴上有n个区间,每次取其中的k个区间,记录区间交集所覆盖的整点;

问对于所有的区间取法,一共覆盖了多少次整点;

题解:

实际上先求出每个整点被多少个区间所覆盖;

假设某点被m条边覆盖,则C(m, k)即为该点一共被覆盖的次数;

(若 m < k 则说明不可能处于k个区间的交集区);

前提:离散化各点! Map[l]++; Map[r+1]--;

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int n;
LL k;
map<int,int> mp; LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
LL f1[maxn],f2[maxn];
/*分子n!,f[i]为(i!)%mod的值*/
void F1()
{
f1[0]=1;
for(int i=1;i<maxn;i++)
f1[i]=(f1[i-1]*i)%mod;
}
/*分母m!,f[i]为(1/i!)%mod的值--逆元*/
void F2()
{
f2[0]=1;
for(int i=1;i<maxn;i++)
{
ex_gcd(i,mod);while(x<0) {x+=mod;y-=i;}
f2[i]=(f2[i-1]*(x%mod))%mod;
}
}
LL C_m_n(LL m,LL n)
{
/*ans=m!/(m-n)!n!*/
LL ans=(((f1[m]*f2[m-n])%mod)*f2[n])%mod;
return ans;
} int main(int argc, char const *argv[])
{
//IN; F1(); F2();
while(scanf("%d %I64d",&n,&k) != EOF)
{
mp.clear();
for(int i=1; i<=n; i++) {
LL x,y; scanf("%I64d %I64d", &x,&y);
mp[x]++;
mp[y+1]--;
} LL last = 0;
LL ans = 0, cur = 0;
map<int,int>::iterator it;
for(it=mp.begin(); it!=mp.end(); it++) {
LL x = it->first, y = it->second;
if(cur >= k)
ans = (ans + C_m_n(cur, k)*(x-last)) % mod;
last = x;
cur += y;
} printf("%I64d\n", ans);
} return 0;
}

CodeForces 689E Mike and Geometry Problem (离散化+组合数)的更多相关文章

  1. CodeForces 689E Mike and Geometry Problem

    离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...

  2. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  3. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  4. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  5. codeforces 689E E. Mike and Geometry Problem(组合数学)

    题目链接: E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes ...

  6. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  7. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...

  8. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

  9. codeforces#410C Mike and gcd problem

    题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...

随机推荐

  1. Effective C++学习笔记 条款02:尽量以const,enum,inline替换 #define

    尽量使用const替换 #define定义常量的原因: #define 不被视为语言的一部分 宏定义的常量,预处理器只是盲目的将宏名称替换为其的常量值,导致目标码中出现多分对应的常量,而const定义 ...

  2. php和java的一些比较

    现在市场上的电子商务软件基本上可归结为两大阵营,即PHP阵营和Java阵营.但对接触电子商务不久的用户来说,看到的往往只是它们的表相,只是明显的价格差异,却很难看出它们之间的实际差异.其实,PHP+ ...

  3. crtbegin_dynamic.o: No such file: No such file or directory

    /homesec/android2/zhangbin/053work3/hi050src/HiSTBAndroidV400R001C00SPC050B012/prebuilt/linux-x86/to ...

  4. Android 系统内置App JNI

    说明 将Android应用作为系统内置遇到一些问题: 一个是使用Android源码的mmm命令生成的JNI名字和使用NDK生成的JNI的名字是不一样的: 另外就是AndroidManifest.xml ...

  5. 解决jQuery对表单serialize后出现的乱码问题

    通过看jQuery源码可以知道,serialize方法是通过encodeURIComponent编码的,所以解决乱码的最笨方法:  1.重新分解序列化后的值  2.把分解的值重新decodeURICo ...

  6. python - os.path,路径相关操作

    python处理系统路径的相关操作: # -*- coding: utf-8 -*- import os # 属性 print '__file__: %s' % __file__ # 绝对路径(包含文 ...

  7. poj 3160 Father Christmas flymouse

    // 题目描述:从武汉大学ACM集训队退役后,flymouse 做起了志愿者,帮助集训队做一些琐碎的事情,比如打扫集训用的机房等等.当圣诞节来临时,flymouse打扮成圣诞老人给集训队员发放礼物.集 ...

  8. 给IT新男的15点建议:苦逼程序员的辛酸反省与总结

    很多人表面上看着老实巴交的,实际上内心比谁都好强.自负.虚荣.甚至阴险.工作中见的多了,也就习惯了. 有一些人,什么事都写在脸上,表面上经常得罪人,甚至让人讨厌.但是他们所表现的又未必不是真性情. 我 ...

  9. [Everyday Mathematics]20150208

    对 $f\in C^2(\bbR)$ 适合 $$\bex \vlm{|x|}f(x)=0, \eex$$ 试证: $$\bex \int_{\bbR} |f'|^p\rd x \leq (p-1)^\ ...

  10. android 滑动菜单SlidingMenu的实现

    首先我们看下面视图:       这种效果大家都不陌生,网上好多都说是仿人人网的,估计人家牛逼出来的早吧,我也参考了一一些例子,实现起来有三种方法,我下面简单介绍下: 方法一:其实就是对Gesture ...